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We demonstrate dynamical near-complete inversion switching of a two-level quantum dot driven by pico-
second optical pulses in a bimodal photonic band gap �PBG� waveguide at microwatt power levels. This is
enabled by a sharp steplike discontinuity in the local �electromagnetic� density of states �LDOS� provided by
a cutoff in one of the two waveguide modes. The atomic Bloch vector equations in this colored vacuum are
derived using dressed state description of the atomic density operator in the presence of phonon-mediated
dephasing. Instead of assuming phenomenological decay rates, we derive explicit expressions for decay terms
of bare state atomic dipole moments and population in the Born-Markov approximation from a master equation
approach. Giant Mollow splitting of the atom level due to subwavelength light localization of strong driving
pulse causes the time-dependent Mollow bands to straddle the LDOS jump, leading to different radiative decay
rates in the upper and lower Mollow sidebands. This results in remarkable field-dependent spontaneous emis-
sion and dipolar dephasing rates, combined with a novel “vacuum structure” term in the Bloch equations. Our
Bloch equations predict ultrafast high-contrast inversion switching that is activated and deactivated by pico-
second pulse trains detuned below and above the atomic resonance, respectively. This dynamic inversion is due
to the rapid rise in relaxation rates as the pulse amplitude rises, causing the Bloch vector to switch from
antiparallel to parallel alignment with the pulse “torque vector.” Subsequent near-complete inversion occurs
through an adiabatic following process retained long after the pulse amplitude subsides and the system reverts
to slow relaxation. For a 1% inhomogeneously broadened distribution of quantum dot with average of 100 D
dipole moment, driven by 1.5 �m picosecond pulses and coupled to a cutoff mode LDOS jump with radiative
emission rates of �high=2.5 THz and �low=5 GHz, a large average population switching contrast of 0.5 is
demonstrated with a phonon dephasing rate �p=0.5 THz. A 1.6 fJ control pulse is required per switching
operation and a 30 �W pulse train is sufficient to maintain the inversion. This switchable gain �loss� segment
of the PBG waveguide can be used to controllably amplify �absorb� signal pulses conveying optical informa-
tion. This provides a robust mechanism for ultrafast multiwavelength channel all-optical logic in PBG
microchips.
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I. INTRODUCTION

Based on the properties of light localization �1,2� and in-
hibited spontaneous emission �3�, photonic band gap �PBG�
materials have emerged as a broad and robust platform for
integrated photonics. These photonic crystals �PCs� modify
the dispersion relations of electromagnetic waves, thereby
changing the vacuum electromagnetic density of states
�DOS� throughout an extended volume of the material. Elec-
tromagnetic waves with a frequency within the photonic
band gap cannot propagate inside the crystal but may be
confined within subwavelength regions with lifetimes limited
only by absorption or nonlinear decay processes. Guiding of
light through subwavelength scale circuit paths �4–8� en-
ables very strong optical fields at very low power levels for
exceptional nonlinear optical effects.

Whereas the PBG is generally regarded as a spectral
range in which the electromagnetic DOS vanishes, engi-
neered defects in the otherwise periodic microstructure can
have the opposite effect. Waveguide architectures within a
three-dimensional �3D� PBG can achieve very large local
density of states �LDOS� via mode cutoff, with Purcell fac-
tors �ratio of spontaneous emission rate to that in free space�
of several thousands �9,10�. In this case, spontaneous emis-
sion that would normally occur in nanoseconds can be accel-

erated to occur in a picosecond, enabling radiative emission
to supercede phonon-mediated �nonradiative� relaxation even
at room temperature.

In this paper, we theoretically demonstrate dynamic inver-
sion of the quantum-dot population driven by picosecond
femtojoule laser pulses in a bimodel PC waveguide with cut-
off mode. Nonlinear quantum-dot dynamics in this strong-
coupling engineered vacuum was introduced recently �11�.
As a result of the LDOS jump, important “vacuum structure
terms” in the atomic Bloch vector equation together with
field-dependent spontaneous emission and dipolar relaxation
rates drastically alter Bloch vector dynamics from that of
ordinary vacuum. This forces a rapid realignment of the
atomic Bloch vector from antiparallel to parallel to the pulse
“torque vector” as the pulse approaches its peak. Subsequent
adiabatic following brings the quantum dot to near-complete
population inversion that persists after the pulse subsides.
The inversion can be maintained by a train of picosecond
pulses tuned slightly below the resonance transition fre-
quency. The quantum dot can be switched back to its ground
state using a picosecond optical pulse tuned slightly above
the resonance transition. This high-contrast dynamic control
of the quantum-dot Bloch vector is robust to picosecond time
scale phonon dephasing and provides a promising mecha-
nism for nearly terabit per second all-optical logic at micro-
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watt power level in a photonic band gap microchip.
Resonant quantum optics in the strong coherent coupling

regime is a subject of fundamental scientific importance. In
this regime, the resonator’s coherent coupling to a specific
set of photonic modes is much stronger than its coupling to
the dissipative environment, so that transient light-matter dy-
namics occurs much faster than the dissipation due to the
environment �electromagnetic or phonon heat bath�. In this
case, novel quantum mechanical nonlinearities not observed
in the classical system may emerge. Previously, strong cou-
pling has been experimentally studied using a dilute gas of
two-level atoms, driven resonantly by coherent optical fields
or coupled to the resonant mode of planar cavities. However,
the realization of strong coupling of a single two-level solid-
state system �i.e., a quantum dot� has not been realized until
recently �12–17�. The demonstrations of vacuum Rabi split-
ting �12–14� and Mollow splitting �15–17� inside photonic
crystal nanocavities, as well as other semiconductor micro-
cavities, have sparked broad interest in on-chip quantum
electrodynamics with important potential applications in
single photon sources and quantum information processing.

Resonance light-matter system can occur in either �A�
smooth electromagnetic DOS such as free space or �B� dis-
continuous LDOS inside photonic crystals. The electromag-
netic vacuum influences the light-matter interaction through
radiative relaxation of the atomic dipole and population. Ac-
cording to the length of interaction time scale �t �e.g., pulse
duration, observation time, etc.� relative to the relaxation
time scale 1 /�, three time regimes can be identified �Fig. 1�.
In �I� the coherent transient regime �t�1 /�, the amount of
relaxation during the interaction can be ignored and only the
transient light-matter dynamics needs to be considered.
Vacuum Rabi oscillations �18,19� and self-induced transpar-
ency �19,20� belong to this regime, as well as adiabatic fol-
lowing and adiabatic inversion in ordinary vacuum
�19,21,22�. In regime �II�, �t�1 /�, both the transient dy-
namics and the dissipation need to be taken into account. The
adiabatic following and inversion can still exist in this re-
gime, although influenced by dissipation. In the long inter-
action regime �III�, �t�1 /�, dissipation has enough time to
bring the system to a stationary steady state so that only long
time behavior is important. Resonant fluorescence is a good
example �23�.

Photonic crystals provide a novel platform for studying
near resonant light-matter interactions. Strong coupling is

achievable inside photonic crystals due to field enhancement
effects �24� and strong suppression of the electromagnetic
vacuum DOS deep inside the photonic band gap. The recent
realization of quantum-dot vacuum Rabi splitting �12� uti-
lizes the first feature. Important effects of the reduced DOS
on light-matter interactions include the photon-atom bound
state �25� and localization of super-radiance �26�. The DOS,
albeit strongly suppressed, may be smooth and featureless
deep inside the gap, as in ordinary vacuum. Even with the
presence of a nonsmooth DOS profile �e.g., waveguide cutoff
mode�, the dynamics in the coherent transient time regime
are not significantly affected since the amount of dissipation
can be ignored and the system does not have enough time to
fully sense the vacuum structure. The same phenomena as in
a smooth DOS environment �ordinary vacuum� with possible
enhancements are expected to occupy the bottom left region
in Fig. 1.

On the other hand, as the interaction time increases, a
discontinuous LDOS allows relaxation to play a much richer
role during the resonant light-matter interaction. This leads
to new phenomena not observed in a smooth DOS environ-
ment. In particular, steady-state population inversion and
switching of two-level systems controlled by an external
continuous wave �cw� have been demonstrated �27–29�. This
phenomenon belongs to the bottom right region in the table
of Fig. 1. However, the �t�1 /� region with a nonsmooth
LDOS profile in Fig. 1 is still unexplored. It is the aim of this
paper to delineate striking and unexpected phenomena result-
ing from resonant light-matter interactions in this region.

Driven two-level quantum systems in ordinary vacuum
have a long and rich history �19�. The optical Bloch equation
is a standard tool to describe the evolution of atomic dipole
moments and population, driven by a coherent laser beam.
Spontaneous emission in ordinary vacuum is described by
fixed exponential decay in the Markov approximation �19�.
Near a photonic band edge, however, the vacuum LDOS may
vary significantly within a very small frequency range. This
leads to memory effects not captured in the Markov descrip-
tion. However, if the LDOS variations are confined to an
infinitesimal frequency range �sharp jump� and the LDOS is
smooth elsewhere, a Markov approximation can be applied
locally for frequencies away from the immediate vicinity of
the sharp jump �27,30�. Provided that all atomic Mollow
bands associated with strong-field resonance fluorescence
avoid the sharp LDOS jump, a master equation for the
dressed atom can be derived in a local Markov approxima-
tion when driven by a cw laser field. In this context, weak
steady-state population inversion of a single atom has been
demonstrated �27,31–33� as well as enhanced steady-state
collective atomic inversion �30�. It has also been shown �28�
that non-Markovian effects from the band edge serve to
lower the population switching threshold and to improve the
switching sharpness and contrast.

In this paper, we extend the dressed state master equation
formalism for a cw laser beam in �27� into a time-dependent
driving beam �laser pulses�. We derive the Bloch vector
equation and we demonstrate how this fundamental equation
is qualitatively modified by electromagnetic vacuum struc-
ture. We study a two-level system �e.g., a quantum dot�
driven by strong laser pulses near a one-dimensional photo-

FIG. 1. Distinct interaction regimes for resonance quantum op-
tics. The regime with pulse duration �t comparable with relaxation
time 1 /� in the colored vacuum contains striking and distinct phys-
ics not attainable in other regimes.
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nic band edge provided by a waveguide cutoff mode within a
3D PBG material. This leads to a generalization of the Bloch
equation that accommodates the structure of the LDOS jump
into the spontaneous emission terms. Unlike the stationary
dressed states of a cw beam �27�, the pulse-driven dressed
states are strongly time-dependent and the true Bloch vector
differs considerably from the corresponding instantaneous
steady-state Bloch vector �the long term equilibrium state of
the Bloch vector if the field strength was to remain at the
current value for a long enough time�. Unlike ordinary
vacuum, the relaxation rates of the atomic Bloch vector com-
ponents toward the instantaneous steady-state Bloch vector
are strongly field dependent. This leads to rapid attraction of
the Bloch vector toward a weakly inverted state during the
peak of the incident optical pulse. This rapid attraction is
characterized by subpicosecond realignment of the Bloch
vector from antiparallel to parallel orientation with respect to
the pulse torque vector. As the pulse subsides, the instanta-
neous steady-state Bloch vector reverts to its ground state
configuration. However the field-dependent relaxation rates
become much slower and the true atomic Bloch vector re-
mains in an inverted state. Moreover, this Bloch vector adia-
batically follows the orientation of the pulse torque vector
and achieves a nearly completely inverted state that persists
long after the pulse has subsided. This highly inverted state
can be maintained by a train of picosecond “control pulses.”
An inhomogeneously broadened collection of inverted quan-
tum dots in this photonic band gap waveguide can then act as
a strong gain medium for incoming signal pulses in various
wavelength channels. The gain medium can be coherently
switched back to an absorbing medium by means of a control
pulse that is detuned slightly above the inhomogeneously
broadened atomic distribution. This ultrafast coherently swit-
chable waveguide segment can then be used to perform op-
tical logic operations on signal pulses passing through the
same segment in various wavelength channels.

Adiabatic population inversion of two-level atoms
through laser pulses has previously been achieved in ordi-
nary vacuum through various forms of frequency chirping
during the passage of the laser pulse �19,21,22,34–39�. Ex-
amples include tuning the atomic gas transition frequency
via Stark shift �22�, laser frequency sweeping �35,36�, self-
phase modulation �37�, and intrinsic frequency chirping of
dense two-level systems through resonant dipole-dipole in-
teractions �38,39�. Our dynamic switching through electro-
magnetic vacuum structure also utilizes an adiabatic follow-
ing process but does not require any form of the frequency
chirping or phase modulation techniques. The role of fre-
quency chirping is now replaced by the vacuum structure
that forces realignment of the atomic Bloch vector with the
pulse torque vector during the steady-state attraction process.
This simplification of the inversion process enables a broader
range of control and simpler signal pulses in the operation of
an on-chip optical microtransistor.

In Sec. II, we give a detailed derivation of the master
equation in the time-dependent dressed state basis and inter-
action picture under Born-Markov approximations. The mas-
ter equation is then transferred back into the bare atomic
basis and Schrödinger picture. In Sec. III, the master equa-
tion is used to obtain the generalized Bloch vector equation

with field-dependent relaxation terms and a vacuum structure
term. In Sec. IV, we give a detailed study of the steady-state
properties of a cw-driven system from the Bloch equation
point of view. This recaptures and generalizes earlier results
�27�. In Sec. V, we demonstrate the dynamical switching
mechanism of a quantum dot from the dynamical evolution
of the atomic Bloch vector. We elucidate the steady-state
attraction and adiabatic conditions required for the optical
pulse in Sec. V A. Finally, in Sec. VI, we discuss the possi-
bility of applying the dynamical switching phenomena to
ultrafast all-optical switches. We propose a model device
composed of two channels of picosecond pulses controlling
the population inversion of a collection of inhomogeneously
broadened but independent two-level quantum dots near a
photonic band edge. A population switching contrast up to
0.5 is achieved in the presence of picosecond time scale pho-
non dephasing. The switched two-level medium is then ca-
pable of controlling the propagation of subsequent resonant
signal pulses. This shows the possibility of realizing on-chip
ultrafast all-optical switches via modified atom Bloch vector
dynamics in a structured electromagnetic vacuum.

II. MASTER EQUATION FOR QUANTUM-DOT DENSITY
MATRIX

We consider a two-level atom with transition frequency
�A detuned slightly from a step discontinuity in the electro-
magnetic density of states at frequency �E �Fig. 2�, interact-
ing with a laser pulse E�t� with central frequency �L and
envelop function E�t�. The step-shaped electromagnetic DOS
can be provided by a waveguide cutoff mode within a 3D-
two-dimensional �2D� PGB heterostructure �9�. The atom
also interacts with a smooth featureless nonradiative reser-
voir that is statistically independent from the photonic reser-
voir. This coupling to phonons causes dephasing of the
atomic dipole. The contributions of the two reservoirs to the
reduced master equation are assumed to factorize and can be
treated separately. The contribution of the phonon reservoir
to the master equation is described elsewhere �27�. We focus
here on the derivation of the radiative part of the master
equation.

We consider a classical optical pulse with electric field
amplitude,

LDOS

ΩΩE ΩL ΩA

�a� LDOS

ΩΩE ΩLΩA

�b�

FIG. 2. �Color online� The step-shaped LDOS model with a
band-edge frequency �E. This is provided by a bimodal waveguide
in a 3D PBG material, in which one of the waveguide modes has a
cutoff at �E �9,33�. The quantum-dot �atomic� transition frequency
�A and the pulse central frequency �L are in the low LDOS region.
Two possible atom-field detunings are shown, with �a� �AL	0 and
�b� �AL
0.
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E�t� = E�t�cos��Lt� . �1�

The Hamiltonian, in the absence of phonon coupling, con-
sists of three parts,

H = HS + HR + HSR. �2�

HS is the Hamiltonian of the pulse-driven atom, HR describes
the electromagnetic reservoir, HSR is the atom-reservoir cou-
pling. In the bare atomic basis �ground state �1� and excited
state �2��, this Hamiltonian �in the rotating wave approxima-
tion in rotating frame �L� takes the form �27�

HS = 1
2��AL�3 − �
�t���21 + �12� ,

HR = �
�

���a�
†a�,

HSR = i��
�

g��a�
†�12 − a��21� . �3�

Here the time-dependent Rabi frequency 
�t�=d21�E�t�� /�
and d21 is the quantum-dot dipole transition matrix element.
We assume �d12�= �d21�=d21, E�t�=E�t��, and that the dipole
is parallel to the pulse polarization for simplicity. a�

† and a�

are the creation and annihilation operators of mode � of the
electromagnetic reservoir with frequency ��. We define the
bare atomic operators �ij = �i�	j� �i , j=1,2�, population inver-
sion �3=�22−�11, the detunings �AL=�A−�L, and ��=��

−�L.
Due to the large transition dipole moment of semiconduc-

tor quantum dots �typically 10–100 times larger than natural
atoms� and strong light localization within 3D PBG defect
structures, it is possible to achieve orders of magnitude larger
Rabi frequencies and Mollow splitting than those in free
space. The mode volume of photonic crystal cavities is typi-
cally smaller than the cubic wavelength Vef f 
 �� /n�3

�12,40,41�, with � being the vacuum wavelength and n being
the refractive index of the dielectric material composing the
photonic crystal structure. If we consider the energy of one
photon at �
1.5 �m to be evenly distributed within the
cavity with Vef f ��� /n�3 or smaller, then the average field
strength is on the order of Eavg�103–104 V /cm �assume
n=1�. This corresponds to vacuum Rabi splitting on the or-
der of 100 �eV–1 meV for a typical quantum-dot dipole
moment d21�1028 C m. In fact, 100 �eV size vacuum Rabi
splittings have been widely observed �12–14� and 1 meV
Rabi splitting has been predicted �42� for a single quantum
dot inside PBG and other semiconductor microcavities. For a
quantum dot driven by a coherent laser field, the resulting
Mollow splitting is proportional to the square root of photon
number, so 102 photons would be enough to induce a reso-
nant Mollow splitting that is ten times the vacuum splitting
above, or 1–10 meV.

Our estimate above is relatively conservative. For 3D
PBG cavities, mode volumes of 0.2�� /n�3 are possible �43�,
leading to even stronger fields, and the dipole moments of
quantum dots can be larger than the value we used above.
Furthermore, the Mollow splitting is larger for nonzero fre-
quency detuning �AL. As a result, 10 THz �1THz corresponds
to about 4 meV of splitting� of Rabi frequency and Mollow

splitting are theoretically achievable in 3D PBG waveguides,
enabling enough bandwidth for our model to handle picosec-
ond laser pulses in multiple wavelength channels.

A. Time-dependent dressed states

We consider the atom to be dressed by the intense pulse,

resulting in the time-dependent dressed states �1̃� and �2̃�,

�1̃� = c�t��1� + s�t��2� ,

�2̃� = − s�t��1� + c�t��2� , �4�

where

c2�t� = �1 + �AL/�2��t���/2,

s2�t� = �1 − �AL/�2��t���/2,

��t� = ���AL/2�2 + 
�t�2�1/2. �5�

Note that c and s should have the same sign. The dressed
state atomic operators are defined similarly as their bare state
counterparts,

R̃ij = �ĩ�	 j̃� �i, j = 1,2� ,

R̃3 = R̃22 − R̃11.

The basis transformation �Eq. �4�� defines a time-dependent
unitary operator B that transforms the wave function ��� and
a general operator O in the bare atomic basis into the dressed

atomic basis as ��̃�=B��� and Õ=BOB†. After this basis
transformation, Hamiltonian �2� becomes �44,45�

H̃ = BHB† − i�BḂ† = ���t�R̃3 + �
�

���a�
†a�

+ �
�

�i�g�a�
†�− c�t�s�t�R̃3 + c2�t�R̃12 − s2�t�R̃21� + H.c.�

− i�BḂ† = H̃0 + H̃i, �6�

with H̃0=���t�R̃3+�� ���a�
†a�. Then by further transform-

ing to the interaction picture via the unitary operator U


eiH̃0�t−t0�/�, the Hamiltonian becomes

H̃I = UH̃iU
† = �i��

�

g��a�
†�− c�t�s�t�R̃3ei��t

+ c2�t�R̃12e
i���−2��t��t − s2�t�R̃21e

i���+2��t��t�� + H.c.�

− i�UBḂ†U† = H̃SR
I �t� − i�UBḂ†U†. �7�

For convenience, we rewrite H̃SR
I =�i=1

6 S̃i�̃i, where

S̃1 = S̃4 = R̃3, S̃2 = S̃5 = R̃12, S̃3 = S̃6 = R̃21,

�̃1 = �̃4
† = − i��

�

g�a�
†c�t�s�t�ei��t,

�̃2 = �̃5
† = i��

�

g�a�
†c2�t�ei���−2��t��t,
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�̃3 = �̃6
† = − i��

�

g�a�
†s2�t�ei���+2��t��t. �8�

B. Derivation of the master equation

The density operator of the whole system and reservoir �̃I
obeys the Schrödinger equation

�̇̃I�t� =
1

i�
�H̃I,�̃I�t�� =

1

i�
�H̃SR

I ,�̃I�t�� − �UBḂ†U†,�̃I�t�� .

�9�

The master equation for the reduced atomic density op-
erator in the Born approximation has the form �see Appendix
A for details�

�̇̃I = ��̇̃I�1 − TrR�UBḂ†U†�t�,�̃I�t�� �10�

with

��̇̃I�1 = − �
i,j

1

�2�
0

t

dt���S̃iS̃j�̃I�t� − S̃j�̃I�t�S̃i�	�̃i�t��̃ j�t���R

+ ��̃I�t�S̃jS̃i − S̃i�̃I�t�S̃j�	�̃ j�t���̃i�t��R� , �11�

where 	�̃i�t��̃ j�t���R=TrR�R̃0�̃i�t��̃ j�t���, �̃I�t� is the reduced
density operator of the atom in which a trace over the reser-

voir degrees of freedom has been performed, and R̃0 is the
reservoir part of the density operator. If we make the substi-
tution t�= t−� and assume the electromagnetic reservoir to be
unoccupied, then Eq. �11� can be simplified to

��̇̃I�1 = −
1

�2 �
j=1,2,3

i=4,5,6

�S̃iS̃j�̃I�t� − S̃j�̃I�t�S̃i�

��
0

t

d�	�̃i�t��̃ j�t − ���R −
1

�2

� �
j=4,5,6

i=1,2,3

��̃I�t�S̃jS̃i − S̃i�̃I�t�S̃j�

��
0

t

d�	�̃ j�t − ���̃i�t��R. �12�

To facilitate the evaluation of the correlation integrals, we
spectrally expand the time-dependent factors f�t�
c�t�s�t�,
c2�t�, and s2�t� in �̃i as follows:

f�t� =
1

�2�
�

−�

�

f�ei�td� 

1

�2�
�

−�f/2

�f/2

f�ei�td� . �13�

We assume above that the main spectral components of the
functions cs�t�, c2�t�, and s2�t� are around �=0 with spectral
widths �cs, �c2, and �s2, respectively. The details of the inte-
gral evaluation are provided in Appendix B. After some
straightforward steps, we obtain the dressed state master
equation in the Born-Markov approximation,

�̇̃I = ��̇̃I�1 − TrR�UBḂ†U†�t�,�̃I�t�� �14�

with

��̇̃I�1 = −
�0

2
c2s2��̃I − R̃3�̃IR̃3� −

�+

2
c4�R̃22�̃I − R̃12�̃IR̃21�

−
�−

2
s4�R̃11�̃I − R̃21�̃IR̃12� −

cs

2
e−2i�t�s2�0�R̃12�̃I

− R̃3�̃IR̃12� + c2�+�R̃12�̃I + R̃12�̃IR̃3� + s2�−��̃IR̃12

− R̃3�̃IR̃12� + c2�0��̃IR̃12 + R̃12�̃IR̃3��

−
c2s2

2
e4i�t��− + �+�R̃21�̃IR̃21 + H.c. �15�

Here, �0 and �+ are the decay rates at the central and right
Mollow bands defined in Appendix B, and the decay rate at
the left Mollow side band is �−=2����g��2����−�L
+2��t��
2����g��2����−�L+2��t�+�� for �� �
−�s2 /2,�s2 /2�. This corresponds to applying a local Markov-
ian approximation around each of the Mollow frequencies �L
and �L�2��t�.

The reduced density operator in the Schrödinger picture
and bare atomic basis is given by �=B†U†�̃IUB, so that its
equation of motion reads

�̇�t� =
d

dt
�B†U†�̃IUB� = B†U̇†�̃IUB + B†U†�̃IU̇B

+ Ḃ†U†�̃IUB + B†U†�̃IUḂ + B†U†�̇̃IUB . �16�

Substituting Eq. �14� into Eq. �16� and using the facts that

U̇=−H̃0U / i�, U̇†= H̃0U† / i�, and �̃I=UB�B†U†, we obtain
the radiative part of the master equation in the bare basis and
Schrödinger picture,

�̇rad =
1

i�
B†H̃0U†�UB�B†U†�UB

−
1

i�
B†U†�UB�B†U†�UH̃0B + Ḃ†U†�UB�B†U†�UB

+ B†U†�UB�B†U†�UḂ + B†U†���̇̃I�1

− �UBḂ†U†�t�,�̃I�t���UB , �17�

where ��̇̃I�1 is defined in Eq. �15�. It follows that

�̇rad =
1

i�
�H0,�� + B†U†��̇̃I�1UB + Ḃ†B� + �B†Ḃ − Ḃ†B�

+ �Ḃ†B . �18�

Using the fact that Ḃ†B=−B†Ḃ �since B is a unitary operator�,
this simplifies to

�̇rad =
1

i�
�H0,�� + B†U†��̇̃I�1UB . �19�

Using Eq. �15�, we obtain finally
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�̇rad = − i�R3� −
�0

2
c2s2�� − R3�R3� −

�+

2
c4�R22�

− R12�R21� −
�−

2
s4�R11� − R21�R12� −

cs

2
�s2�0�R12�

− R3�R12� + c2�+�R12� + R12�R3� + s2�−��R12

− R3�R12� + c2�0��R12 + R12�R3�� −
c2s2

2
��−

+ �+�R21�R21 + H.c. �20�

Rij �i , j=1,2� and R3 are the dressed state atomic operators in
Schrödinger picture and bare atomic basis,

R12 = cs�3 + c2�12 − s2�21,

R21 = cs�3 + c2�21 − s2�12,

R3 = �c2 − s2��3 − 2cs��12 + �21� . �21�

The dephasing of the quantum-dot dipole due to phonons
is described by an additional contribution to the master equa-
tion �27�,

�̇deph =
�p

2
�c2 − s2�2�R3�R3 − R3

2�� + 2�pc2s2�R21�R12

− R12R21�� + 2�pc2s2�R12�R21 − R21R12�� + H.c.,

�22�

where �p represents the dipolar dephasing rate due to
phonons.

Combining Eqs. �20� and �22�, we arrive at the full master
equation for the quantum-dot density operator in bare atomic
basis,

�̇ = − i�R3� −
�0c2s2 + �p�c2 − s2�2

2
�� − R3�R3�

−
�+c4 + 4�pc2s2

2
�R22� − R12�R21�

−
�−s4 + 4�pc2s2

2
�R11� − R21�R12� −

cs

2
�s2�0�R12�

− R3�R12� + c2�+�R12� + R12�R3� + s2�−��R12

− R3�R12� + c2�0��R12 + R12�R3�� −
c2s2

2
��−

+ �+�R21�R21 + H.c. �23�

C. Jump model of the radiative decay rates

In the derivation of Eq. �23�, we assumed that the local
photonic density of states is smooth within the Mollow band
regions ��L−�cs /2,�L+�cs /2�, ��L+2�−�c2 /2,�L+2�
+�c2 /2�, and ��L−2�−�s2 /2,�L−2�+�s2 /2� �local Mar-
kovian approximation� but presents a sharp jump at the band-
edge frequency �E outside the above Mollow band regions
�Fig. 2�. Correspondingly, the smooth LDOS leads to the

radiative decay rates �0, �+, and �− at the central, right, and
left Mollow bands. The values of those decay rates are de-
pendent on whether their corresponding Mollow bands fall
within the high LDOS region or the low LDOS region. In
our model �see Fig. 3�, the central and right Mollow bands
are always in the low LDOS region with a decay rate �low.
So we always have �0=�+=�low. The left Mollow side band,
however, can be in either the low LDOS region or the high
LDOS region, depending on the relative size of the Mollow
splitting 2��t� and the field-band-edge detuning �LE=�L
−�E. When 2��t�
�LE, the left Mollow side band is in the
low LDOS region, with �−=�low. On the other hand, when
2��t�	�LE, the left Mollow side band is in the high LDOS
region, with �−=�high. We consider two parameter configu-
rations as follows:

�i� �AL	0 and with �AL	�LE �Fig. 3�a��. In this configu-
ration, we always have 2��t���AL	�LE, so that the left
Mollow side band experiences a constant radiative decay rate
�−=�high.

�ii� �AL
0 and with ��AL�
�LE �Fig. 3�b��. In this con-
figuration, as the Rabi frequency 
�t� changes between 0 and
the peak Rabi frequency 
p, the left Mollow side band can
move from the low LDOS region to the high LDOS region or
vice versa. As a result, �−=�low in the low LDOS region but
changes to �−=�high when moved to the high LDOS region.
Note that at the immediate vicinity of the band-edge fre-
quency �E where LDOS jump occurs �Fig. 3�, our local Mar-
kovian approximation does not apply and �− does not have a
well defined value. Since this happens only during a very
short time scale compared with the entire pulse, we assume
this has a negligible effect on the overall time evolution of
the system.

The step LDOS model assumption is only an approxima-
tion to the LDOS peak provided by the waveguide mode
cutoff. In reality, the LDOS peak has a finite spectral width

��t1� ΩL�2��t1�ΩL�2�

Decay Rate

Γhigh

Γlow

ΩΩE ΩL ΩA

ΩL�2��t2� ΩL�2��t2�

�a�

ΩL�2��t1� ΩL�2��t1�

Decay Rate

Γhigh

Γlow

Ω
ΩE ΩA ΩL

ΩL�2��t2� ΩL�2��t2�

�b�

FIG. 3. �Color online� Decay rates for Mollow bands at different
positions under the step-shaped LDOS model �see Fig. 2�. The cen-
tral Mollow band resides at �L and is time independent, with a fixed
decay rate �0=�low. The time-dependent right Mollow side band
occurs at �L+2��t�, with possible positions at times t1 �when 
�t1�
is small, shown as dark shaded peak� and t2 �when 
�t2� is large,
shown as light shaded peak� shown schematically. In general, the
right-side band experiences a fixed decay rate �+=�low. The decay
rate at the left Mollow side band �L−2��t�, however, depends on
the relative magnitudes of Mollow splitting 2��t� and �LE. Two
parameter configurations are considered: �a� �AL	0 and with
��AL�	�LE. Here, the left side band resides at the high LDOS re-
gion with a fixed decay rate �−=�high since 2��t�	�LE. �b� �AL


0 and with ��AL�
�LE. Here the left side band is in the low
LDOS region with �−=�low when 
�t1� is small �dark shaded peak�
but is in the high LDOS region with �−=�high when 
�t2� is large
�light shaded peak�.
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�LDOS instead of an infinitely wide plateau. The realizable
value of �high is also limited in reality by random disorder
within the waveguide and finite length of the waveguide seg-
ment. The achievable LDOS around a photonic band edge in
realistic structures has been studied before using finite differ-
ence time domain simulations �9�. A 3D-2D photonic crystal
heterostructure with inverse square spiral structures as the
3D cladding layers and square lattice structure as 2D PC
slabs was used during the simulation. Although the result
shown in �9� is the simulated LDOS in arbitrary units, actual
Purcell factors are readily determined from the simulation
program. We present in Fig. 4 a recalculation of unpublished
results for the Purcell factors around a photonic band edge
formed by a waveguide cutoff in a 3D-2D PBG heterostruc-
ture �details of structure given in Ref. �9��. Purcell factors up
to 2300 are achievable for a 15 unit cell length �9 �m for
light with vacuum wavelength �
1.5 �m� waveguide in
this example as shown in Fig. 4. If we assume the atomic
decay rates in ordinary vacuum to be on the order of GHz,
then the peak Purcell factor of 2300 would correspond to a
decay rate around 2.3 THz and a subpicosecond decay time.
Furthermore, the full width half maximum �FWHM� of the
band-edge Purcell factor peak is �LDOS
0.00062�c

a , where a
is the lattice constant of the 2D microchip layer of the 3D-2D
heterostructure. For a typical 1.5 �m wavelength in photo-
nics applications, a
600 nm is required �9�, so that �LDOS

1.88 THz. In order to apply our step LDOS model, the
shape and duration of the envelop function E�t� must be such
that the spectral widths �s2 of the dressed state coefficient
function associated with the left Mollow side band are much
smaller than �LDOS. If we approximate �s2 with the pulse
spectral width �L, then the condition �L
�LDOS corresponds
to a picosecond minimum duration for smooth pulses.

III. ATOMIC BLOCH VECTOR EQUATION FOR
COLORED VACUUM

In this section we derive equation governing the time evo-
lution of atomic population and polarization in our “struc-
tured electromagnetic vacuum.” This emerges from taking
the expectation values of the atomic operators with respect to

the atomic density operator. The density operator satisfies a
Heisenberg equation of motion �the master equation� de-
scribed in Sec. II. We demonstrate the occurrence of certain
vacuum structure terms in the Bloch equation that signifi-
cantly alters the time evolution of the atomic Bloch vector as
the atom interacts with an optical pulse. In addition, we dem-
onstrate the occurrence of strongly field-dependent relax-
ation rates for the atomic Bloch vector components that en-
able near-complete inversion of the atomic population as the
optical pulse subsides. Both of these features are absent in a
conventional �unstructured� electromagnetic vacuum. We de-
fine the following atomic dipole operators:

�1 = �12 + �21,

�2 = i��12 − �21� . �24�

�1 and �2 represent the in-phase and in-quadrature parts of
the dipole moment, respectively. Using Eq. �23� and setting
�0=�+ for our LDOS model, the following Bloch component
equations are obtained �details given in Appendix C�:

	�̇1� = − �AL	�2� −
1

Tu
	�1� + V ,

	�̇2� = �AL	�1� + 2
	�3� −
1

Tv
	�2� ,

	�̇3� = − 2
	�2� −
1

Tw
�	�3� + 1� + V	�1� . �25�

Here, 1 /Tu,v= �c2�1+s2��++s4�−+4�p� /2�c2s2��+−�−� /2,
1 /Tw=c2�1+s2��++s4�−, and V= ��+−�−�cs3. Tu and Tv re-
duce to the transverse dephasing time and Tw reduces to the
longitudinal dephasing time in ordinary vacuum if we set
�+=�−. V is a novel vacuum structure term arising purely
from the jump structure of the electromagnetic vacuum.

The Bloch component equations can be written in vector
form,

�̇ = � � � − �� + C , �26�

where

� = �	�1�,	�2�,	�3�� = �u,v,w�, � = �− 2
,0,�AL� ,

�� = �u/Tu,v/Tv,w/Tw�, C = �V,0,− 1/Tw + Vu� .

The atomic Bloch vector � describes a “mixed state” and
is free to evolve anywhere inside the unit sphere u2+v2

+w2�1. The effects of the structured vacuum appear
through �� and C. Unlike the constant longitudinal and
transverse relaxation times in ordinary vacuum, the atom ex-
periences field-dependent longitudinal and transverse relax-
ation times Tu, Tv, and Tw due to the density of state jump.
The combined effect of these field-dependent relaxation rates
and the vacuum structure term is a dynamical evolution of
the Bloch vector dramatically different from that in ordinary
vacuum. Under suitable steady-state pumping conditions, the
single-atom population inversion w is known to exhibit a
weak switching effect �27� at a certain threshold Rabi fre-

� � � � �
�

�

��

�

�

� � � � � � � � �
0.378 0.379 0.380 0.381 0.382

Ωa�2Πc
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1500

2000

2500

3000
Purcell Factor

FIG. 4. �Color online� Purcell factor near a photonic band edge
formed by waveguide inside a 3D-2D photonic crystal heterostruc-
ture. Details of the structure are given in Ref. �9�.
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quency. This steady-state switching effect has been studied
previously in the linear response framework �27�. Our Bloch
vector equation describes the complete nonlinear response of
the atom to both steady-state control field and strong signal
pulses. Moreover our complete nonlinear and dynamical
treatment of the response of the atom to strong control pulses
reveals a much larger and more robust optical switching and
inversion than is evident from linearized or steady-state de-
scriptions.

IV. STEADY-STATE SWITCHING AND FIELD DEPENDENT
RELAXATION

To provide background for the dynamical switching phe-
nomena presented in Sec. V and as a diagnostic of our gen-
eralized Bloch vector equation, we first discuss the steady-
state properties of Eq. �26� with a constant driving beam.

If 
�t�=
0 is a constant �cw laser�, then by setting �̇=0,
we obtain the steady-state solution of Eq. �26�,

Duss = 2
0�ALTuTv + V�Tu + 4
0
2TuTvTw� ,

Dvss = − 2
0Tv + VTuTv��AL + 2
0VTw� ,

Dwss = − 1 − �AL
2 TuTv + VTuTw�V − 2
0�ALTv� , �27�

where D
1+4
0
2TvTw+�AL

2 TuTv+2
0V�ALTuTvTw. If we as-
sume �AL	�LE	0, so that �−
�high and �+
�low, then as
shown in Fig. 5, the steady-state solution �Eq. �27�� exhibits
switching of the population wss and in-phase part of the di-
pole moment uss at certain threshold values 
thr. This thresh-
old depends on the ratio �− /�+ of the decay rates at the left
and right Mollow side bands, as well as the phonon dephas-
ing rate �p. The in-quadrature part of the dipole moment vss
is usually very small, especially for high �− /�+ ratios, low
�p, and strong fields. The norm of the Bloch vector exhibits
a dip around 
thr, but it can be shown algebraically from Eq.

�27� that lim
0/�AL→���ss�= ��−−�+� / ��−+�++8�p�. For small
�p and �+ compared with �−, this strong-field limit of Bloch
vector norm is very close to 1. The switching effect does not
exist for �AL
0, �−=�high, and �+=�low. However, we will
not consider that parameter region for now.

A simplified algebraic expression of the steady-state di-
pole moments and population inversion has been derived
previously �27� by ignoring some of the “nonsecular” terms
during the derivation of the master equation �Eq. �23��. With
some simple change of notations, this simplified steady state
�27� can be expressed as

wss
sec = �c2 − s2�R3

sec,

uss
sec = − 2csR3

sec,

vss
sec = 0, �28�

with R3
sec= �s4�−−c4�+� / �s4�−+c4�++8c2s2�p�. Figure 6

shows the difference between Eqs. �27� and �28�. It can be
seen that for low temperature �small �p�, Eq. �28� is a good
approximation of Eq. �27� except near the switching thresh-
old. The differences between the two solutions become more
significant for smaller contrast ratios �− /�+ and higher tem-
peratures �larger �p�.

A noteworthy feature of the steady-state solution �Eq.
�27�� is that except for the neighborhood of the switching
threshold, the steady-state Bloch vector �ss always aligns
closely with the torque vector �. In other words, �
0 or
�
� with � being the angle between �ss and �. This can be
seen by looking at the steady-state equation for the in-
quadrature component of the Bloch vector, 0= v̇ss=�ALuss
−vss /Tv+2
wss. This can be solved approximately by ob-
serving that vss remains very small throughout the evolution
�Fig. 5�b��. Using vss
0, we obtain
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FIG. 5. �Color online� The steady-state value of �a� uss, �b� vss,
�c� wss, and �d� the norm of the Bloch vector ��ss� as functions of the
laser beam Rabi frequency 
0 for different photonic decay rate con-
trast ratios �− /�+ and phonon dephasing rates �p. �AL=1 THz,
�−=2.5 THz, and �− /�+=1000, �p=0 THz �thick solid lines�;
�− /�+=100, �p=0 THz �solid lines�; �− /�+=100, �p=0.1 THz
�dashed lines�; and �− /�+=100, �p=0.5 THz �dotted lines�.
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FIG. 6. �Color online� Comparison of the steady-state solution
�Eq. �27�� with Eq. �28�: �a� uss−uss

sec, �b� vss−vss
sec, �c� wss−wss

sec,
and �d� ��ss�− ��ss

sec� as functions of the laser beam Rabi frequency 
0

for different photonic decay rate contrast ratios �− /�+ and phonon
dephasing rates �p. �AL=1 THz, �−=2.5 THz, and �− /�+=1000,
�p=0 THz �thick solid lines�; �− /�+=100, �p=0 THz �solid
lines�; �− /�+=100, �p=0.1 THz �dashed lines�; and �− /�+=100,
�p=0.2 THz �dotted lines�.
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�ss
x /�ss

y 
 uss/wss 
 − 2
/�AL 
 �x/�y . �29�

This implies that �ss and � remain nearly parallel. In the
limit of �+→� �in which case there is no clearly defined
threshold� any nonzero value of 
0 will bring the system to
positive population inversion. Regardless of the value of 
0,
�ss always aligns parallel to � ��=0�. When �+ is finite,
perfect alignment of �ss with � is not always achieved.
However, except near the switching threshold, �
0 or �

� still remains true, especially for high �− /�+ ratios and
small �p, as shown in Fig. 7. The alignment of �ss with � is
most evident for large 
0. For �AL	0 and no inversion when

0

thr�wss
0�, uss is positive and �ss

inst is nearly antiparal-
lel to the torque vector �= �−2
 ,0 ,�AL� ��=��. In the struc-
tured electromagnetic vacuum, wss becomes positive after
inversion when 
0	
thr and the corresponding sign change
in uss describes switching of the steady-state Bloch vector �ss
from antiparallel to parallel alignment with � ��=0�. As
shown in Sec. V, the realignment of �ss with � provides a
precondition for achieving dynamical inversion that is much
higher than the steady-state inversion wss.

We now study the rate at which the atom relaxes to its
steady state. The decay rates 1 /Tu, 1 /Tv, and 1 /Tw in the
Bloch equation �Eq. �26�� are field dependent, as shown in
Fig. 8. Both 1 /Tu and 1 /Tw increase monotonically with 
0.

Unlike in ordinary vacuum, 1 /Tu�1 /Tv in general due to
the asymmetry between �+ and �−. �p has a strong effect on
the dipole dephasing rates 1 /Tu and 1 /Tv, but it does not
affect 1 /Tw significantly. The combined effect of 1 /Tu, 1 /Tv,
and 1 /Tw is a field-dependent effective decay rate 1 /T� of
the Bloch vector ��t� toward its steady-state value �ss. A
simple analytic expression of 1 /T� is not available. Instead,
we perform numerical simulations of the relaxation process
of � toward �ss, shown as the decay of the distance ��−�ss�
between � and �ss. As shown in Fig. 8, the population relax-
ation rates in general increase with 
0. Figure 9 shows the
relaxation of ��−�ss� for a small Rabi frequency around the
switching threshold �Fig. 9�a�� and for a high Rabi frequency
�Fig. 9�b�� far above the threshold. The relaxation of the
Bloch vector is much slower for Rabi frequency near the
switching threshold �on the order of 102 ps� than far above
the threshold �on the order of several ps�. As a result of this
slow relaxation for weak fields, it is not practical to utilize
this steady-state effect for ultrafast switching even though
wss presents switching with respect to 
0. An ultrafast steady-
state switching device using collective atomic response has
been proposed �27,33�. However, we will focus on single-
atom or independent atoms in this paper. Strong field relax-
ation of the Bloch vector toward steady state is much faster.
This would allow ultrafast steady-state switching at the cost
of a much smaller population inversion �Fig. 5�c�� and a
much higher power consumption. It is therefore important to
go beyond the steady-state picture to achieve switching with
high speed, high-contrast ratio, and low power consumption
simultaneously.

V. DYNAMIC SWITCHING AND NEAR COMPLETE
INVERSION

The field-dependent relaxation rates provide an unprec-
edented opportunity to dynamically control the time regimes
of strong-coupling dynamics in real time. For example, if a
single smooth pulse with proper time duration is strong
enough, then the Purcell enhanced radiative decay rates due
to increased coupling to the band edge near the peak of the
pulse would surpass the transient oscillations and attract the
system into the steady-state regime �III� �Fig. 1�. On the
other hand, during the weak field of the pulse precursor and
tail, the radiative decay rates fall significantly below the co-

0 1 2 3 4 5 6
Ε �THz�

Π

4

Π

2

3 Π

4

Π
Θ �Radians�

FIG. 7. �Color online� Relative angle � between the steady-state
atomic Bloch vector �ss and the laser beam torque vector �, as a
function of the laser beam Rabi frequency 
0, for different photonic
decay rate contrast ratios �− /�+ and phonon dephasing rates �p.
�AL=1 THz, �−=2.5 THz, and �− /�+=1000, �p=0 THz �thick
solid lines�; �− /�+=100, �p=0 THz �solid lines�; �− /�+=100, �p

=0.1 THz �dashed lines�; and �− /�+=100, �p=0.5 THz �dotted
lines�.
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FIG. 8. �Color online� Decay rate of the population inversion for
different �− /�+ ratios and �p. �AL=1 THz, �+=5 GHz, and �−

=1 THz, �p=0 THz �solid lines�; �−=1.5 THz, �p=0 THz
�dashed lines�; �−=2.5 THz, �p=0 THz �dotted lines�; and
�=2.5 THz, �p=0.5 THz �thick dashed lines�.
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FIG. 9. �Color online� Relaxation of ��t� toward �ss for different
�− /�+ ratios and �p. �a� 
0=0.3 THz, around the threshold values;
�b� 
0=6 THz, far above threshold values. �AL=1 THz, �+

=5 GHz, and �−=1 THz, �p=0 THz �solid lines�; �−=1.5 THz,
�p=0 THz �dashed lines�; �−=2.5 THz, �p=0 THz �dotted lines�;
and �=2.5 THz, �p=0.5 THz �thick dashed lines�.
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herent transient evolution rate due to decreased coupling
from the band edge, so that the system escapes from the
steady state and enters the coherent transient regime �I� �Fig.
1�. The time-averaged radiative decay rates would be on the
same order of magnitude as the pulse duration, so that over-
all the system belongs to time regime �II� in Fig. 1. However,
on closer examination, as the electromagnetic field strength
rises and falls with the pulse, the system essentially alter-
nates between the steady-state regime �III� and the transient
regime �I�. As discussed in Sec. IV, the new vacuum struc-
ture term in the Bloch equation enables unusual steady-state
switching effects unattainable in a smooth LDOS environ-
ment. By combining this steady-state switching with coher-
ent dynamics, novel nonlinear Bloch vector dynamics,
unique to a structured vacuum, is uncovered.

In this section, we illustrate an unusual dynamic quantum-
dot population switching mechanism due to the interplay be-
tween steady-state attraction and coherent dynamics. If the
driving laser field satisfies the steady-state attraction condi-
tion and adiabatic following condition �to be discussed in
Sec. V A�, the transient dynamics of adiabatic following as
the pulse subsides brings the system to either near-complete
inversion or the ground state. Unlike the steady-state switch-
ing, nonlinear dynamics in the colored vacuum offers high
switching speed, high switching contrast, and low power
consumption simultaneously.

A. Quasisteady adiabatic pulse

In order to realize the chorus between different time re-
gimes during the dynamic switching proposed above and
achieve maximum population switching contrast, certain
conditions should be satisfied by the exciting optical pulse.

We define an adiabatic pulse as one whose torque vector
speed �roughly characterized by the rate of change of the
Rabi frequency scaled by detuning ��AL�� is much smaller
than the precession frequency ��� of the Bloch vector around
the torque vector �,

d
�t�
dt

1

��AL�
� ��� . �30�

The conditions for a quasisteady pulse in a colored
vacuum, however, are more complex than in free space. In
ordinary vacuum, the steady-state Bloch vector varies
smoothly with the pulse Rabi frequency and the relaxation
rates are field independent. Consequently, we can loosely
define a quasisteady pulse as one that satisfies 
̇�t� / ��AL�
�1 /T�. In this case, the decay rate of the Bloch vector to-
ward the instantaneous steady state is much faster than the
rate of change of the instantaneous steady state. As a result,
the evolution of the Bloch vector closely follows that of the
instantaneous steady state caused by the change of the Rabi
frequency 
�t�. In the colored vacuum described in Sec. IV,
the instantaneous steady state changes dramatically near the
switching threshold, and 1 /T� is strongly field dependent. To
capture those unusual features, we give a more precise defi-
nition of quasisteady pulses. In the absence of a simple ana-
lytic expression of 1 /T�, we use ���= ��1 /Tu ,1 /Tv ,1 /Tw�� as
a simplified approximant for 1 /T�. We define a pulse as qua-

sisteady if for a large enough time duration �qs �called the
steady-state attraction interval� around the peak, tp, of the
pulse envelop function, the following steady-state attraction
conditions hold:

�d�ss
inst

„
�t�…
dt

� � ��� for t � �tp −
�qs

2
,tp +

�qs

2
� ,

�31a�

1

�qs
� ��� . �31b�

Here, �ss
inst(
�t�) is the instantaneous steady state at time t

defined as �ss(
0=
�t�) in Eq. �27�. Condition Eq. �31a�
means the change rate of the instantaneous steady state
caused by the temporal variation of the pulse envelop is
much smaller than the relaxation rate of the Bloch vector.
This enables the Bloch vector to closely follow the instanta-
neous steady state near the peak of the pulse. Unlike in an
unstructured electromagnetic vacuum, the relaxation rates
are strongly field dependent. While ��� can be large �in the
order of THz� for the strong field near the peak of the pulse,
it becomes much smaller near the leading and trailing edges
of the pulse. Indeed, for pulses of interest to us, the quantum-
dot switching threshold occurs considerably below the peak
of the pulse where the instantaneous steady state changes
dramatically. The condition �Eq. �31a�� does not hold
throughout the duration of such a pulse. However, we only
require that Eq. �31a� holds for a sufficiently long time du-
ration, �qs, near the peak of the pulse. This enables the Bloch
vector to relax to the instantaneous steady state �ss

inst�
p� of
the peak Rabi frequency, 
p, far above the switching thresh-
old, 
thr. This “steady-state attraction” requires the approxi-
mate relaxation time to be short compared to �qs, a condition
that is expressed in Eq. �31b�.

For concreteness, we consider a Gaussian pulse with tem-
poral Rabi frequency profile,


�t� = 
pe−��t − tp�/��2
. �32�

Here, � is the pulse duration, tp is pulse peak time, and 
p is
the peak Rabi frequency. Figure 10 illustrates condition �Eq.
�31�� applied to a Gaussian pulse with FWHM of 15 ps, 
p
=6 THz, and tp=30 ps. The decay rates are �−=2.5 THz,
�+=5 GHz, �p=0 and the detuning �AL=2 THz. The
shaded area shows the scaled temporal profile of 
�t�. The
darker the shade, the better the condition �Eq. �31a�� is sat-
isfied, with �d�ss

inst(
�t�) /dt� �solid curve� much smaller than
��� �dashed curve�. Clearly the leading and trailing edges of
the pulse do not satisfy the steady-state attraction condition.
However, for a duration �qs
20 ps around tp, steady-state
attraction does occur. This is sufficient for this pulse to be
categorized as quasisteady. A pulse is “quasisteady adiabatic”
if both Eqs. �31� and �30� hold simultaneously. It is easy to
verify that the Gaussian pulse shown in Fig. 10 is in fact a
quasisteady adiabatic pulse.
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B. Dynamic quantum-dot inversion via steady-state attraction
and adiabatic following

When both the steady-state attraction condition �Eq. �31��
and adiabatic following condition �Eq. �30�� are satisfied, the
evolution of the strongly coupled quantum-dot system can be
described as a steady-state attraction near the pulse peak fol-
lowed by a coherent adiabatic following process when the
pulse subsides. When �AL	0, the combination of these two
processes leads to a dynamic inversion mechanism belonging
to time regime �II� in Fig. 1.

Figure 11�a� depicts the 3D Bloch vector evolution path

exhibiting dynamical inversion by the Gaussian pulse shown
in Fig. 10, with �−=�high, �+=�low, and �AL	0. Figure 11�c�
shows the corresponding 2D plots of u�t�, v�t�, and w�t� as
functions of time. The evolution process can be divided into
the following two distinct stages:

�i� Steady-state attraction process �time regime III of Fig.
1�. In this stage, the atom starts from the ground state ��t0
=0�. As the optical pulse impinges on the atomic dipole, it
begins to Mollow split the atomic energy levels �in the in-
stantaneous steady-state picture�, with the left side band ap-
pearing in the high LDOS region �with an effective decay
rate �−=2.5 THz�, while the center and right side bands re-
main in the low LDOS region �with an effective decay rate
�+=5 GHz�. The vacuum structure appears in the atomic
Bloch equation �Eq. �26�� as an asymmetry in the Mollow
side band decay rates ��. The result is a highly field-
dependent instantaneous steady state �ss

inst �its evolution path
shown as the �green� dotted curve in Fig. 11�a��, which
switches from antiparallel to parallel alignment with the
pulse torque vector �thick black vectors� as the pulse strength
surpasses the steady-state threshold. �ss

inst approaches the
�green� steady-state spot �ss

inst�t1� in Fig. 11�a� as the peak of
the pulse arrives, where �ss

inst�t1� represents the inverted in-
stantaneous steady state at time t1=32.5 ps around the peak
of the pulse tp=30 ps, with �ss

inst�
�t1��
�ss
inst�
p�. Since the

pulse satisfies the steady-state attraction condition �Eq. �31��
around the peak, the rapid relaxation rates of the actual
Bloch vector toward its instantaneous steady state quickly
pull � �thin red vectors� toward �ss

inst�t1�. This steady-state
attraction process is much faster than adiabatically �steadily�
inverting the atom with a slowly varying weak field that
passes over the switching threshold. By time t1, ��t1� has
almost reached �ss

inst�t1� and is well aligned �parallel� with the
torque vector ��t1� of the driving laser field.

�ii� Adiabatic following process �time regime I of Fig. 1�.
In this second stage, the pulse has passed its peak and is
declining in strength. In order to more clearly separate and
elucidate the different stages, we consider an extended pulse.
The final outcome of high inversion is also achieved with
much shorter pulses. The second stage is the adiabatic fol-
lowing process from t1 to t3=60 ps. The torque vector
evolves from ��t1� to ��t3�. Since our illustrative pulse sat-
isfies the adiabatic following condition �Eq. �30��, the Bloch
vector � adiabatically follows the change of the torque vector
from ��t1� to ��t3�, approaching a highly inverted population
with vanishing dipole moments. During this adiabatic fol-
lowing process, the actual Bloch vector deviates substan-
tially from the instantaneous steady state, shown as the dot-
ted �green� curve in Fig. 11�a�. This is due to the reduced
relaxation rate for the weaker field and the more rapid
change of the instantaneous steady state in the pulse tail
around the steady-state switching threshold. This departure
between ��t� and �ss

inst(
�t�) is already observable at time t2
=42.5 ps as the deviation of ��t2� from �ss

inst�t2�, which is the
instantaneous steady state at t2. The departure becomes much
more significant toward the end of the pulse at t3=60 ps
�shown as the difference between ��t3� and �ss

inst�t3��. The
departure of ��t� from �ss

inst(
�t�) during the adiabatic follow-
ing process is a key to achieving much higher population
inversion than possible in previous studies �27,28,33� of

0 10 20 30 40 50 60
t �ps�
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0.4

0.6
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Rates �THz�

FIG. 10. �Color online� The steady-state attraction condition
�Eq. �31�� applied to a Gaussian pulse with �=15 ps, 
p=6 THz,
and tp=30 ps. The solid curve is �d�ss

inst(
�t�) /dt� and the dashed
curve is ���. The shaded area shows the scaled temporal profile of
the pulse Rabi frequency, with the darkness of the shading repre-
senting the degree to which condition �Eq. �31�� is satisfied. All
rates are in THz.
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FIG. 11. �Color online� Dynamical inversion of a two-level
atom. �−=2.5 THz, �+=5 GHz, �p=0 THz, �LE=1 THz, �AL

=2 THz, 
p=6 THz, t0=0 ps, t1=32.5 ps, t2=42.5, t3=60 ps,
and �=15 ps. �a� 3D evolution path of the Bloch vector ��t� �red
solid curve�. The �red� thin vectors are Bloch vectors at different
times, while the �black� thick vectors are the corresponding torque
vectors. The big �green� dots are the instantaneous steady states at
different times, while the dotted �green� curve shows the evolution
path of the instantaneous steady states. �b� Scaled temporal profile
of the pulse Rabi frequency, with the darkness of the shading rep-
resenting how well condition �Eq. �30�� is satisfied. The solid curve
is �d�ss

inst(
�t�) /dt� and the dashed curve is ���; all rates are in THz.
�c� 2D plot of the dipole moments u�t� �blue dotted curve�, v�t�
�green dashed curve�, and population inversion w�t� �red solid
curve� as functions of time.
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steady-state switching. It is a striking consequence of the fact
that the Bloch vector norm experiences relatively slow decay
during the adiabatic following process at reduced field
strength. The steady-state attraction condition �Eq. �31a�� no
longer holds toward the tail of the pulse. As a result, instead
of relaxing and following the evolution of the instantaneous
steady state to the ground state as the pulse subsides, the
Bloch vector follows the evolution of the torque vector adia-
batically to achieve a highly inverted state.

Although the whole dynamical inversion process shown
in Fig. 11 has a time span of 60 ps, the FWHM pulse dura-
tion is just 15 ps. The illustrative 60 ps long time duration
was chosen for the purpose of showing a smooth evolution
path for the quantum-dot Bloch vector. The process can ac-
tually be completed in a much shorter time scale around the
pulse duration �, with sharper pulse precursors and tails. As
will be shown later, the high decay rate �high=2.5 THz in
the high LDOS region enables even 1 ps pulses to achieve
the dynamic inversion described above. The dynamical in-
version of the quantum dot is both much faster and much
larger than its steady-state counterpart �33�. The power con-
sumption is likewise lower since we need only a short pulse
to perform switching. Instead of a steady cw beam, the in-
verted state can be maintained by a train of picosecond
pulses, separated by a time scale of 1 /�+, which can be in the
range of 10–100 ps.

One significant feature of the dynamical inversion is that
the initial condition of the Bloch vector ��t0=0� has almost
no influence on the final Bloch state achieved toward the
vanishing tail of the pulse. This is a direct consequence of
the steady-state attraction process, during which most of the
information about the initial Bloch vector is rapidly damped
out. We demonstrate this fact in Fig. 12 with the same pulse
and system parameters as in Fig. 11. Figure 12 illustrates that
the quantum-dot Bloch vectors can start from three different
initial positions �1,2,3�t0�, but their subsequent trajectories
converge to the same peak instantaneous steady state �shown
as �ss

inst�t1�� at time t1. After that, they follow the identical
adiabatic path from ��t1� to ��t4�. The different initial con-
ditions �1,2,3�t0� have almost no influence on the final in-
verted state. This is a very important property for the appli-
cation of the dynamic inversion to practical optical switches.
It means that noise and fluctuations in the initial condition, as
well as past operation histories, do not distort present or
future optical logic operations.

C. Trade off between steady-state attraction and adiabatic
following conditions

We now study the steady-state attraction condition �Eq.
�31�� and the adiabatic condition �Eq. �30�� in more detail.
These two conditions must be satisfied for stable dynamical
inversion with the highest possible inversion allowed by ��

and �p. More specifically, we need the pulse to satisfy the
steady-state attraction condition �Eq. �31�� for a sufficient
long time duration around its peak and satisfy the adiabatic
condition �Eq. �30�� throughout the second half of the pulse
until its vanishing tail. Slight deviation from Eq. �30� may
lead to a final inverted state with oscillating dipole moments

due to possible transient oscillations that are difficult to con-
trol. Slight deviation from Eq. �31� may reduce the achiev-
able maximum inversion as estimated in Eq. �35� because the
Bloch vector does not have enough time to reach �ss�
p�.
More significant deviations from Eqs. �30� and �31� can
completely destroy the dynamical inversion phenomena. We
now study the major factors that affect the validity of these
two conditions.

For a smooth pulse, the left-hand side of Eq. �30� can be
roughly characterized as 
p / ����AL�� with � being the pulse
duration, while the right-hand side �RHS� has ���� ��AL�.
Therefore a sufficient condition for Eq. �30� to be satisfied
throughout the second half of the pulse �until the vanishing
tail� is


p

�
� ��AL�2. �33�

Typically for a smooth strong pulse, Eq. �31a� is more
easily satisfied than Eq. �31b� because the instantaneous
steady state changes very slowly around the peak:
�d�ss

inst�
� /dt�= �d�ss
inst�
� /d
�d
 /dt. d
 /dt remains small near

the peak of a smooth pulse and �d�ss
inst�
� /d
� is small when

the Rabi frequency is far above the switching threshold �see
Fig. 5�. Therefore, we consider only Eq. �31b�. To further
investigate Eq. �31b�, we note that ��� depends on both the
reservoir decay rates �� and �p and the dressed state com-
position coefficients c and s, which in turn depend on

p /�AL. For �AL	0, ��� increases with 
p /�AL. A higher �−
value will also give a bigger overall decay rate ��� due to the
enhanced spontaneous emission at the left Mollow side band.
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FIG. 12. �Color online� Dynamical inversion of a two-level
atom with different initial conditions. �−=2.5 THz, �+=5 GHz,
�p=0 THz, �LE=1 THz, �AL=2 THz, 
p=6 THz, t1=32.5 ps,
t4=60 ps, and �=15 ps. �a� 3D evolution paths of the Bloch vector
��t� with initial conditions �1�t0=0�= �0,0 ,−1� �red solid curve�,
�2�t0�= �0.2,0 ,−0.4� �orange dashed curve�, and �3�t0�
= �0.2,0 ,0.5� �blue dotted curve�; �b� 2D plot of the dipole mo-
ments u�t�, v�t�, and population inversion w�t� as functions of time,
with initial condition �1�t0�= �0,0 ,−1� �red solid curves�, �2�t0�
= �0.2,0 ,−0.4� �orange dashed curves�, and �3�t0�= �0.2,0 ,0.5�
�blue dotted curves�.
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�+ typically has little effect on ��� because it is usually much
smaller than �− in our model. Although a high �p can also
enhance ��� �thereby satisfying Eq. �31��, this significantly
reduces the maximum inversion achievable as shown in Eq.
�35�. Therefore a large �p is not desirable. In short, for Eq.
�31� to hold, a high 
p /�AL ratio and high �− are important.

Simply put, both the steady-state attraction condition �Eq.
�30�� and the adiabatic condition �Eq. �30�� are satisfied with
a strong smooth pulse with proper time duration � and atom-
field detuning �AL and with sufficiently large decay rate �−.
Provided these conditions are met, a Gaussian pulse shape is
not necessary for the dynamic inversion to occur. Indeed, it
is possible to optimize the inversion speed and switching
contrast with various non-Gaussian pulses.

From the above analysis, we can also see that for a fixed
photonic band-edge structure �characterized by ��� and
pulse envelop �defined by � and 
p�, the correct atom-field
detuning �AL is crucial for satisfying the steady-state attrac-
tion and adiabatic following conditions. The detuning deter-
mines the trade off between the two conditions when the
radiative decay rates are not large compared to the pulse
duration and the two conditions are not satisfied simulta-
neously. If �AL is too small, the adiabatic condition may be
violated according to Eq. �33�. If �AL is too large �
p /�AL is
too small�, the steady-state attraction condition may be vio-
lated. Choosing �AL in an appropriate range is important. As
an example, Fig. 13 shows three different dynamical inver-
sions for different �AL, each starting from the ground state at
t=0 but arriving at three different final states at t4. In Fig.
13�a�, the �red� solid evolution path of �1 corresponds to a
properly chosen �AL=2 THz. In this case, both the steady-
state attraction and adiabatic conditions are satisfied and the
final state �1�t4� has a high inversion without transient dipole

oscillations. The �orange� dashed evolution path of �2 corre-
sponds to excessive �AL=5 THz. As a result, the steady-
state attraction condition is violated and the Bloch vector
cannot reach the peak instantaneous steady state shown as
the dot �ss2

inst�t1� during the steady-state attraction process
��2�t1� is far away from �ss2

inst�t1��. The maximum inversion
achieved by �2 is smaller than that of �1 due to the insuffi-
cient Bloch vector norm attained during the steady-state at-
traction process. The �blue� dotted evolution path of �3 cor-
responds to undervalued �AL=0.5 THz. In this case, the
adiabatic condition is not satisfied and the evolution path
shows significant transient oscillations, making the final state
�3�t4� hard to control.

D. Maximum inversion: Analytical estimate

We now investigate in detail the factors that influence the
final state of the Bloch vector. We are especially interested in
the maximum achievable inversion when both Eqs. �30� and
�31� are well satisfied. This maximum inversion typically
occurs toward the end of the optical pulse interaction.

Strictly speaking, every parameter in the system has some
influence on the maximum achievable inversion. This in-
cludes the decay rates ��, the dephasing rate �p, the atom-
field detuning �AL, the pulse peak Rabi frequency 
p, and
possibly the temporal profile of the pulse envelop function.
But from the two-step dynamic inversion process described
in Sec. V B, we find that all these factors exert their influ-
ence on the maximum achievable inversion in two basic
ways. One is through their influence on the norm of the
Bloch vector at the end of the steady-state attraction process.
This defines the Bloch norm at the beginning of the adiabatic
following process. The other is through their influence on the
amount of decay experienced by the Bloch vector norm dur-
ing the adiabatic following process. Once the norm of the
Bloch vector �at the end of the steady-state attraction pro-
cess� and the amount of decay experienced by the Bloch
vector norm �during the adiabatic following process� are de-
termined, the final norm of the Bloch vector �toward the
vanishing tail of the pulse� can be predicted. Since the highly
inverted state corresponds to a nearly vertical quantum-dot
Bloch vector �absence of any significant polarization�, the
magnitude of inversion is itself nearly the norm of the Bloch
vector.

The above argument can be quantified by postulating an
approximate relationship,

wmax 
 ��wmax
� 
 Fdecay��p� , �34�

where ��wmax
� is the Bloch vector norm at the maximum in-

version point near the end of the pulse, ��p� is the Bloch
vector norm at the pulse peak, and Fdecay is the effective
decay factor of the Bloch norm during the adiabatic follow-
ing process. If the steady-state attraction condition �Eq. �31��
is well satisfied, then ��p�
��ss�
p��. From Eq. �27� we have
��ss�
p��=�uss

2 �
p�+vss
2 �
p�+wss

2 �
p�, which in the strong-field
limit is given by lim
p/�AL→���ss�
p��= ��−−�+� / ��−+�+

+8�p�. Although it is difficult to give an exact analytic ex-
pression of the amount of decay during the adiabatic follow-
ing process, we can reasonably assume that it approximates
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FIG. 13. �Color online� Dynamical inversion of a two-level
atom with different atom-field detunings. �−=2.5 THz, �+

=5 GHz, �p=0 THz, �LE=1 THz, 
p=6 THz, t1=32.5 ps, t4

=60 ps, and �=15 ps. �a� 3D evolution paths of the Bloch vector
��t� with atom-field detunings �AL=2 THz �red solid curve�, �AL

=5 THz �orange dashed curve�, and �AL=0.5 THz �blue dotted
curve�; �b� 2D plot of the dipole moments u�t�, v�t�, and population
inversion w�t� as functions of time, with atom-field detunings �AL

=2 THz �red solid curves�, �AL=5 THz �orange dashed curves�,
and �AL=0.5 THz �blue dotted curves�.
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the form of an exponential function with the decay rate de-
pendent on �� and �p. So if the steady-state attraction con-
dition is well satisfied, wmax
e−��1�++�2�−+�3�p���ss�
p��,
where �1,2,3 are fitting parameters with dimension of time
that depend on pulse shape and duration. If furthermore,

p /�AL�1, then we can simplify wmax to its strong-field
limit. The maximum inversion is then roughly estimated
solely by the three decay rates �+, �−, and �p as

wmax 
 e−��1�++�2�−+�3�p� �− − �+

�− + �+ + 8�p
. �35�

Figure 14 provides a comparison of the analytical estimate of
Eq. �35� with actual numerical simulation values of wmax.
Note that all the curves in Fig. 14 are fitted as a whole, not
separately, with �� and �p as independent variables.

E. Rapid down switching from inverted to ground state

Up to now, we have considered dynamic inversion due to
a quasisteady adiabatic pulse with �AL	0. An inverted
quantum dot will remain in its excited state for a time period
long compared to the switching time scale because the relax-
ation rate is now defined by the lower density of states in the
absence of the applied field. Rapid down switching can be
achieved by using another optical pulse with �AL
0. The
down switching occurs, once again, via the steady-state at-

traction and adiabatic following processes. Consider a quasi-
steady adiabatic pulse with �AL
0 interacting with a two-
level atom near a LDOS jump as shown schematically in
Figs. 2�b� and 3�b�. Unlike the system with a positive �AL,
the instantaneous steady state of the system with a negative
�AL presents no population switching. This can be verified
from the analytic steady-state expression �27�. As a result,
during the steady-state attraction process the Bloch vector
relaxes to an uninverted state well aligned with the torque
vector �for �AL
0, the torque vector is always below the
u-v plane�. The subsequent adiabatic following process then
brings the Bloch vector further downward toward the ground
state. There is one subtlety for a negatively detuned pulse not
present with a positively detuned pulse. While we can make
�−
�high for a positively detuned pulse throughout the pulse
duration by choosing ��AL�	�LE �Fig. 3�a��, we cannot do
this for a negatively detuned pulse impinging on a quantum
dot in the low LDOS region �Fig. 3�b��. For �AL
0, sudden
changes of �− between �low and �high occur at the band edge.
Strictly speaking, our treatment is not applicable at the im-
mediate vicinity of �E. However, the duration of non-
Markovian regime is very short compared with the overall
pulse duration and we simply assume an instantaneous
change in �− at �E. As a result, oscillations appear in the
Bloch vector path when crossing jumping points of �−.

Figure 15�a� illustrates a typical evolution path of the
Bloch vector interacting with a negatively detuned ��AL
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FIG. 14. �Color online� Comparison of the analytic estimation of the maximum inversion wmax through Eq. �35� �solid, dashed, and dotted
lines� with numerical simulation results �marked curves� for different values of �� and �p. The Gaussian pulse has a detuning from the atom
�AL=2 THz and a detuning from the band edge �LE=1 THz, with 
p=6 THz and �=15 ps. The fitting parameters used are �1


10.8 ps, �2
9.8�10−3 ps, and �3=4.9 ps. A total of 800 numerical simulation points are used as data. The mean regression sum of
squares MSR=44.1 and the mean squared error MSE
5.3�10−4.
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0� 15 ps quasisteady adiabatic Gaussian pulse. The quan-
tum dot starts from a highly inverted state ��t0�. From t0

=0 ps to tc=21 ps, the pulse Rabi frequency 
�t� grows
from zero and the left Mollow sideband moves toward the
LDOS jump at �E. But the Mollow splitting is still smaller
than �LE so that the left Mollow band remains in the low
LDOS region and �−=�+=5 GHz. Hence the Bloch evolu-
tion from t0 to tc is simply that in an ordinary vacuum with
vacuum decay rate �low from ��t0� to ��tc�. For t	 tc, how-
ever, the left Mollow sideband enters the high LDOS region
and �− jumps from 5 GHz to 2.5 THz. Then from tc to t1

=32.5 ps, the steady-state attraction process brings the
Bloch vector to ��t1�, very close to the instantaneous steady
state �ss

inst�t1� at t1 around the pulse peak. Now ��t1� is well
aligned with the torque vector ��t1� below the u-v plane.
The Bloch vector then adiabatically follows ��t� via t2

=40 ps and finally reaches the ground state at t3=60 ps.
Figure 15�c� shows the corresponding 2D plots of the dipole
moments u�t�, v�t�, and population w�t� as functions of time.
The nonsmoothness of the evolution path is visible at tc. This
is an artifact of our local Markov approximation as discussed
above. As in the case of dynamic inversion with a positively
detuned pulse, the initial position of the Bloch vector also
has almost no influence on the final state produced by this
down switching process, as long as the quasisteady and adia-
batic conditions �Eqs. �31� and �30�, respectively� are well
satisfied. The magnitude of the atom-field detuning ��AL� is
important for satisfying those conditions.

VI. APPLICATIONS OF DYNAMIC SWITCHING

Dynamic switching of driven two-level systems near a
photonic band edge may have many applications. For ex-
ample, population transfers �a technique, widely adopted in
chemistry and molecular physics, of transferring an atom or
molecule from a specified initial quantum state into a desired
target state by exposing this system to a controlled pulse of
radiation� �34� now rely on adiabatic inversion in ordinary
vacuum through various frequency chirping techniques. In
contrast, our dynamic inversion near the photonic band edge
realizes inversion without frequency chirping. It also facili-
tates population transfers “on chip,” where the two-level sys-
tems are integrated with photonic band gap materials and
their population transfers are controlled on the micron scale.

In this paper, we focus on the possible application of dy-
namic switching to on-chip picosecond all-optical switches,
operating at microwatt powers. More specifically, we aim to
achieve high-contrast switching via FWHM of 1 ps pulses at
high temperature �associated with a large �p�. There are two
challenges involved in this goal. The first is that at high
temperature, large �p reduces the maximum Bloch norm at-
tainable during the steady-state attraction process. This in
turn reduces the maximum possible population inversion. We
use a typical value of �p=0.5 THz in our study below. The
second challenge comes from the use of ultrafast �picosec-
ond� pulses. This makes it more difficult to satisfy the
steady-state attraction and adiabatic conditions �Eqs. �31�
and �30�, respectively�. �=1 ps implies a THz rate of change
of the pulse Rabi frequency. This is over ten times the rate
used for the 15 ps pulse studied in earlier sections of this
paper. As a result, the left-hand sides of Eqs. �31� and �30�
are much larger. Therefore an increase in the atom-field de-
tuning �AL is necessary in order to satisfy the adiabatic con-
dition �Eq. �30��. Since we need to keep the ratio 
p /�AL
large, we must also increase the peak Rabi frequency 
p of
the pulse. The steady-state attraction condition could also be
satisfied by increasing the photonic decay rate �−. However,
we face two fundamental limits in this strategy. The first is
the limit of achievable �− defined by accuracy of fabrication
of the structure. In principle the local electromagnetic den-
sity of states is divergent for an infinitely long waveguide
with a mode cutoff. However imperfections in microfabrica-
tion and finite length of any practical device limit the actual
magnitude of the density of states jump �9�. Although the
�−=2.5 THz decay rate we have been using is insufficient to
precisely fulfill the steady-state attraction condition �Eq.
�31��, it is already larger than the THz spectral width of the
pulse. Therefore, we retain the choice �−=2.5 THz. The sec-
ond limitation is the maximum field strength that can be
tolerated by our semiconductor material before dielectric
breakdown occurs. This leads to an upper limit of the maxi-
mum Rabi frequency, given a specific quantum-dot transition
dipole moment. �The break down field strength of GaAs is
about 4�105 V /cm �46�, while dipole moments on the or-
der of 100 D �1 D
3.335 64�10−30 C m� are possible in
certain kind of large GaAs quantum dots �13,47,48� obtained
by growth fluctuations of quantum wells as apposed to small
self-assembled dots. The upper limit for Rabi frequency in
such quantum-dot systems is therefore on the order of 120
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FIG. 15. �Color online� Dynamical down switching of a two-
level atom to the ground state. �high=2.5 THz, �low=5 GHz, �p

=0 THz, �LE=5 THz, �AL=−2 THz, 
p=6 THz, tc=21.17 ps,
t1=32.5 ps, t2=40 ps, t3=60 ps, and �=15 ps. �a� 3D evolution
path of the Bloch vector ��t� �red solid curve�. The �red� thin vec-
tors are Bloch vectors at different times, while the �black� thick
vectors are the corresponding torque vectors. The big �green� dots
are the instantaneous steady states at different times, while the dot-
ted �green� curve shows the evolution path of the instantaneous
steady states. �b� Scaled temporal profile of the pulse Rabi fre-
quency, with the darkness of the shading representing how well
condition �Eq. �31�� is satisfied. The solid curve is �d�ss

inst(
�t�) /dt�
and the dashed curve is ���; all rates are in THz. �c� 2D plot of the
dipole moments u�t� �blue dotted curve�, v�t� �green dashed curve�,
and population inversion w�t� �red solid curve� as functions of time.
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THz.� This in turn limits the maximum �AL we can adopt
since we want to keep 
p /�AL large for the steady-state at-
traction. Due to this limit in 
p, there is a compromise be-
tween satisfying the steady-state attraction condition and the
adiabatic following condition. The two factors, �− and 
p,
present practical limits to the extent to which we can satisfy
both conditions �Eqs. �31� and �30�� simultaneously.

Given the above practical limits for a pulse with FWHM
of 1 ps, namely, �p=0.5 THz, �−=2.5 THz, and 
p

120 THz, we consider different combinations of �AL and

p in search of the best dynamic inversion performance. The
steady-state attraction condition and the adiabatic following
condition cannot be fulfilled simultaneously due to the prac-
tical limitation on �−. Instead, we seek a balance between the
two. One suitable set of parameters we find is 
p=42 THz
and �AL=8 THz. The decay rate �+ does not substantially
modify the Bloch vector dynamics provided it remains much
smaller than �−. We choose �+=5 GHz. Figure 16 shows a
numerical simulation of the dynamic inversion for the above
set of parameters. A final inversion around 0.2 is achieved. In
Fig. 16�a�, we see that the Bloch vector starts from a state
below inversion ��t0� and relaxes toward the instantaneous
peak steady state �ss

inst�tp�. Since the steady-state attraction
condition �Eq. �31�� is not well satisfied, the Bloch vector
fails to reach �ss

inst�tp� during the attraction process. For a
picosecond pulse, the Bloch vector never reaches any instan-
taneous steady state �shown as the �green� dotted curve in
Fig. 16�a��. The smallest distance between the Bloch vector
and the instantaneous steady states occurs around t1
=2.8 ps after the peak of the pulse at tp=2 ps. During the
adiabatic process from t1 to t2=3.2 ps, the Bloch vector does
not strictly follow the movement of the torque vector. This is
evident from the small transient oscillations that persist after
t2. These oscillations result from precession of the Bloch
vector not well aligned with the torque vector at t1 �the be-
ginning of the adiabatic process�. Also �AL is not large
enough to satisfy the adiabatic condition �Eq. �30��.

Since the steady-state attraction condition �Eq. �31�� is not
fully satisfied for the dynamic inversion shown in Fig. 16,
memory of the initial state of the Bloch vector is not com-
pletely damped out during the attraction process. Conse-
quently, Bloch vectors starting from different positions be-
fore the pulse arrives can reach slightly different inversions
after the pulse passes. This effect is shown in Fig. 17. Three
different initial Bloch vector positions are considered. The
dipole moments u�t� and v�t� all go to zero regardless of the
initial conditions, but the maximum inversion achieved is
different. For ��t0=0�= �0,0 ,−1� �red solid curves�, the
maximum inversion is wmax
0.17. For ��t0�= �0.2,0 ,−0.4�
�orange dashed curves�, wmax
0.20, and for ��t0�
= �0.2,0 ,0.5� �blue dotted curves�, wmax
0.26.

Despite the imperfect dynamic inversion for a picosecond
pulse, an average inversion of about wmax
0.2 is realized at
a temperature corresponding to �p=0.5 THz. Since the final
inversion varies only moderately with the initial Bloch vec-
tor state, the dynamic inversion mechanism applied to a large
collection of inhomogeneously broadened quantum dots
should still provide reliable picosecond switching of a wave-
guide segment from absorption to gain.

We propose a simple picosecond switching device based
on the population flipping of two-level systems using optical
pulse streams in a 3D PBG waveguide with a band edge
�waveguide with cutoff mode�. The inset of Fig. 20 depicts
the spectral configuration of the device. It is composed of
two channels of picosecond quasisteady adiabatic pulses
with central frequencies �L1

for channel 1 �dark peak� and
�L2

for channel 2 �light peak�, interacting with a collection of
inhomogeneously broadened but independent two-level at-
oms with average transition frequency �̄A and standard de-
viation �A �Black peak�. The LDOS of the photonic reservoir
presents a sharp jump at �E, with decay rates �high for �

�E and �low for �	�E. The device is assumed to operate
in a temperature environment modeled with a rapid phonon
dephasing rate �p. A quasisteady adiabatic pulse in channel 1

��̄AL1
	0� switches the two-level atoms to an inverted state,

while a quasisteady adiabatic pulse in channel 2 ��̄AL2

0�
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FIG. 16. �Color online� Picosecond dynamical inversion of a
two-level atom. �−=2.5 THz, �+=5 GHz, �p=0.5 THz, �LE

=5 THz, �AL=8 THz, 
p=42 THz, tp=4 ps, tf =5.2 ps, and �
=1 ps. �a� 3D evolution path of the Bloch vector ��t� �red solid
curve�. The �red� thin vectors are Bloch vectors at different times.
The big �green� dots are the instantaneous steady states at different
times, while the dotted �green� curve shows the evolution path of
the instantaneous steady states; �b� 2D plot of the dipole moments
u�t� �blue dotted curve�, v�t� �green dashed curve�, and population
inversion w�t� �red solid curve� as functions of time.
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FIG. 17. �Color online� 2D plot of u�t�, v�t�, and w�t� for the
picosecond dynamical inversion of a two-level atom with different
initial conditions. �−=2.5 THz, �+=5 GHz, �p=0.5 THz, �LE

=5 THz, �AL=8 THz, 
p=42 THz, tp=4 ps, and �=1 ps. Red
solid curves: ��t0=0�= �0,0 ,−1�; orange dashed curves: ��t0�
= �0.2,0 ,−0.4�; and blue dotted curves: ��t0�= �0.2,0 ,0.5�.
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switches the two-level atoms to an uninverted state.
As an example, we choose the parameters such that the

average detuning of �L1
from the two-level systems is �̄AL1

=8 THz, and the average detuning of �L2
from the two-level

systems is �̄AL2
=−8 THz. The two-level quantum dots have

a Gaussian distribution with FWHM, ��A=12 THz. �For
dot transition around 1.55 �m, this corresponds to
��A / �̄A
1%, while for dot transition around 1.2 �m,
��A / �̄A
0.6%.� The detuning of channel 1 from the band
edge is �L1E=5 THz. We also choose the decay rates �high

=2.5 THz, �low=5 GHz, and �p=0.5 THz. The pulses we
are using are Gaussian in shape with FWHM duration of 1 ps
and peak Rabi frequency 
p=42 THz. We simulate the inter-
action of the two-level atoms with the two channels of pulses
separately in the rotating frames of �L1

and �L2
for channel 1

and channel 2, respectively.
Figure 18 shows the evolution of the weighted averages

of the Bloch vector ��t�, as well as the dipole moments ū�t�,
v̄�t�, and population inversion w̄�t� under the interaction with
a quasisteady adiabatic pulse in channel 1. The maximum
inversion achieved in this simulation is w̄max
0.15, with ini-
tial position of the Bloch vector ��t0�= �0,0 ,−0.5�. Remark-
ably, the transient oscillations during the adiabatic process
are not averaged out, and the evolution curve of the weighted
average Bloch vector closely resembles that of the Bloch

vector for a single two-level atom with �AL= �̄AL, as shown
in Fig. 16.

Figure 19 shows the evolution of the weighted averages
of the Bloch vector ��t�, as well as the dipole moments ū�t�,
v̄�t�, and population inversion w̄�t� under the interaction with
a quasisteady adiabatic pulse in channel 2. The final de-
excitation achieved in this simulation is w̄max
−0.35, with
initial position of the Bloch vector ��t0�= �0,0 ,0.2�.

Figure 20 illustrates the continuous stable switching op-
erations performed by this model device. The solid curve
shows the time evolution of the average population inversion
w̄�t�, controlled by the pulses in channel 1 and channel 2,

whose scaled temporal profiles are shown as the dark and
light shaded regions in the graph, respectively. The switching
action of each pulse is simulated separately, with the final
state produced by the previous pulse as the initial condition
of the quantum dots for the current pulse. The dipole mo-
ment components of all the final states are approximated as

�a�

u
v�

w

Ρ�0�

Ρ�t f �

Ε �t�

2 Εmax

u�t�

v�t�

w�t�

1 2 3 4 5 6 7
�0.6

�0.4

�0.2

0.0

0.2

0.4

t �ps�

�b�

FIG. 18. �Color online� Picosecond dynamical switching of a
collection of inhomogeneously broadened independent two-level at-
oms to a negative inversion state. �high=2.5 THz, �low=5 GHz,

�p=0.5 THz, �LE=5 THz, �̄AL=8 THz, ��A=12 THz, 
p

=42 THz, tf =6 ps, and �=1 ps. �a� 3D evolution path of the av-
erage Bloch vector ��t� �red solid curve�. The �red� vectors are the
initial and final average Bloch vectors; �b� 2D plot of the average
dipole moments ū�t� �blue dotted curve�, v̄�t� �green dashed curve�,
and population inversion w̄�t� �red solid curve� as functions of time.
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FIG. 19. �Color online� Picosecond dynamical switch of a col-
lection of inhomogeneously broadened independent two-level at-
oms to a negative inversion state. �high=2.5 THz, �low=5 GHz,

�p=0.5 THz, �LE=21 THz, �̄AL=−8 THz, ��A=12 THz, 
p

=42 THz, tf =6 ps, and �=1 ps. �a� 3D evolution path of the av-
erage Bloch vector ��t� �red solid curve�. The �red� vectors are the
initial and final average Bloch vectors; �b� 2D plot of the average
dipole moments ū�t� �blue dotted curve�, v̄�t� �green dashed curve�,
and population inversion w̄�t� �red solid curve� as functions of time.
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FIG. 20. �Color online� Demonstration of the high temperature
operation of a possible dynamical switching device, with a collec-
tion of inhomogeneously broadened but independent two-level at-
oms controlled by two channels of picosecond Gaussian pulses near
a photonic band edge. The optical pulse train controls the average
population w̄�t� �solid curve� of inhomogeneously broadened
atomic distribution with phonon dephasing and the scaled temporal
profiles of the pulses in channel 1 �dark shading� and channel 2
�light shading�. All pulses have a FWHM of �=1 ps and peak Rabi
frequency 
p=42 THz. The switching contrast of w̄ is about 0.5;
inset: schematic spectral model of the switching device, showing
the LDOS structure with a band-edge frequency �E, the Gaussian
distribution of the inhomogeneously broadened atomic transition
frequency �black shading� with mean �̄A, and the two control chan-
nels of picosecond Gaussian pulses with central frequencies �L1
�dark shading� and �L2

�light shading�. The relative positions of
those frequencies are specified by the detunings �L1E=5 THz,

�̄AL1
=8 THz, �̄AL2

=−8 THz and inhomogeneous width ��A

=12 THz. The decay rates are �high=2.5 THz ��high
−1 =0.4 ps�,

�low=0.005 THz, and �p=0.5 THz.
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zero for simplicity. The separation between two consecutive
pulses is 4 ps but can be made much longer with essentially
the same result. A switching contrast of about 0.5 is
achieved.

After the passage of a control pulse in channel 1, although
the instantaneous steady state �ss

inst immediately returns to the
ground state, the true atomic population w̄ stays inverted
with slow decay rate �low. If a subsequent weak signal pulse
�with area �� in a third resonant channel �centered at �̄A�
passes through this amplifying medium, pulse transmission
and reshaping are equivalent to that of an amplifying me-
dium in ordinary vacuum �19,49� �provided the signal pulse
is not so strong to push the Mollow sidebands back into the
high LDOS region�. With an additional broadband linear
loss, weak signal pulses will be amplified into stable � pulse
solitons and traverse the device without attenuation. On the
other hand, a control pulse in channel 2 leaves w̄ uninverted.
Under the action of this resonant medium alone, according to
the McCall-Hahn area theorem �19,20�, a subsequent signal
� pulse is at the unstable branch point where it can be either
amplified to area 2� or completely absorbed during propa-
gation. But the presence of the additional broadband linear
loss pushes the pulse into the absorption branch, leading to
complete absorption of the signal pulse. Effectively, we can
control light �signal pulses in channel 3� with light �femto-
joule control pulses in channels 1 and 2� on picosecond time
scales with microwatt average power levels �to be estimated
below�.

To estimate the energy per control pulse and the average
operating power of the proposed all-optical switch device,
assume the pulse is in the propagating mode of a 3D-2D
heterostructure similar to the “architecture 1” in Ref. �33�,
with a 2D layer lattice constant a=0.425 �m for 1.55 �m
central vacuum wavelength. The height of the 2D layer is
assumed to be h=0.3a. We assume that the field strength
envelop function has a Gaussian temporal profile with
FWHM Wt=1 ps and a Gaussian spatial cross sectional pro-
file along the in-plane normal direction �x direction� of the
waveguide �along y direction� with FWHM Wx=a and is
uniform along the out-of-plane normal direction �z direction�
within the 2D layer but vanishes abruptly at the 3D PBG
cladding boundary �i.e., a step profile in the z direction�. The
peak field strength is �Ep�=1.4�107 V /m according to the
parameters used in the model device. So the cross section
electric field strength function can be written as

�E�t,x,z�� = �Ep�e−4 ln 2�t/Wt�
2
e−4 ln 2�x/Wx�2

f�z� ,

where f�z�=1 for 0
z
h and f�z�=0 otherwise.
To estimate the time-averaged Poynting vector over an

optical cycle inside the waveguide, we ignored the effects of
the small defect pillars and embedded two-level quantum
dots on the energy density inside the waveguide by approxi-
mating the PC waveguide as an ordinary hollow dielectric
waveguide with the same group velocity as the propagating
mode of the PC waveguide. Then the time-averaged energy
density over an optical cycle 	u�= �
0�E�2+ �B�2 /�0� /4 inside
the waveguide can be estimated as 	u�

0�E�t ,x ,z��2 /2 by
using the approximate plane wave relation between magnetic

field and electric filed �B�= �E� /c, where 
0 is the vacuum
permittivity, �0 is the vacuum permeability, and c is the
speed of light. The time-averaged Poynting vector over an
optical cycle is calculated as 	S�= 	u�vg, with the group ve-
locity vg=0.2c as in Ref. �33�. Now the energy per pulse can
be estimated to be

E = �
−�

�

dt�
−�

�

dx�
−�

�

dz	S� 
 1.6 fJ.

The average operating power is inversely proportional to
the separation time �t between control pulses. As long as �t
is small compared with the free decay time 1 /�+=200 ps of
the quantum dots in the absence of control pulses, the popu-
lation inversion generated from the previous control pulse
would be maintained before the next control pulse arrives.
Using �t=50 ps, the average operation power p=E /�t

30 �W, considerably below the operation power for the
steady-state switching proposed earlier �33�.

VII. CONCLUSION

In conclusion, we have demonstrated the consequences of
two fundamentally new features of nonlinear optical Bloch
vector dynamics in the presence of sharp and abrupt structure
in electromagnetic density of states. The modifications of the
Bloch vector equation include �i� a “vacuum structure” term
proportional to the jump in the electromagnetic LDOS when
the jump lies in a frequency interval less than the Rabi fre-
quency of the light-matter interaction and �ii� remarkable
field-dependent spontaneous emission and polarization relax-
ation rates as the atomic Mollow components span low and
high electromagnetic DOS regions during interaction with an
optical pulse. The vacuum structure term drives the atomic
Bloch vector to a weakly inverted state in the steady-state
limit. However, during interaction with a short optical pulse,
the instantaneous �actual� Bloch vector adiabatically follows
the pulse torque vector �in nearly antiparallel alignment� and
lags considerably behind its steady-state value as the pulse
amplitude rises. As the pulse approaches its peak value, the
dressed atom experiences the high LDOS region and the re-
laxation rate of the instantaneous Bloch vector to its steady-
state value is greatly enhanced. This allows the actual Bloch
vector to rapidly catch up to its weakly inverted steady-state
value. In doing so, the true Bloch vector rapidly switches
from antiparallel to parallel alignment with the pulse torque
vector. As the optical pulse amplitude subsides, the steady-
state Bloch vector returns to the ground state, but the instan-
taneous �true� Bloch vector is unable to relax rapidly toward
it since the dressed atom now probes the low LDOS part of
the spectrum. Instead, the actual Bloch vector adiabatically
follows the pulse torque vector �parallel alignment� to a
nearly completely inverted state. This high inversion state
persists long after the optical pulse subsides since the time
scale of spontaneous emission in the low LDOS region is
much longer than the picosecond pulse duration.

The remarkable nonlinear dynamics and population flip-
ping of the quantum-dot Bloch vector is a direct consequence
of two fundamental properties of a waveguide in a 3D PBG
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material. The first property is the very strong light localiza-
tion �mode confinement� of the PBG waveguide enabling
very strong fields to be delivered to the location of a suitably
embedded quantum dot with only modest �microwatt� power
levels. Combined with the large quantum-dot transition di-
pole moment, this allows the separation of Mollow compo-
nents in the dressed atoms to reach unprecedented values,
exceeding a 1% inhomogeneously broadened spectrum of a
collection of quantum dots. The second property is the
unique nature of the structured electromagnetic vacuum in
3D PBG bimodal waveguide. Contrary to common expecta-
tion, the LDOS within the PBG waveguide can be several
orders of magnitude larger than in ordinary vacuum. The
very dense mode continuum enables radiative relaxation ef-
fects to occur on picosecond time scales, enabling them to
supercede phonon-mediated relaxation events. The very pre-
cipitous jump in the electromagnetic DOS at the waveguide
cutoff frequency is likewise a unique consequence of the
surrounding 3D PBG. The magnitude and the spectral range
of the DOS jump associated with the waveguide cutoff are
determined by the length of the waveguide segment and the
degree of random disorders in the PC. As an example, it has
been shown in �10� that the LDOS peak of a 12-�m-long W1
PC waveguide �see �10� for detailed structure� is relatively
robust to a 4% disorder ��9 nm diameter randomness for a
waveguide operating at �
1.5 �m� in the dielectric rod ra-
dius outside the defect line of the waveguide, while more
precise control of the defect line fabrication accuracy is re-
quired to obtain a precisely located LDOS peak within 0.3%
of the operating frequency. Nonetheless, the effect of the
LDOS peak location uncertainty on dynamic switching can
partly be compensated by inhomogeneous broadening in the
transition frequency of the quantum dots embedded in the
waveguide.

Earlier strong-coupling experiments have focused on
GaAs based quantum dots that emit close to 1 �m
�13,15,17�. Strong coupling was also observed in a 2D PC
membrane cavity at 1.2 �m using an InAs-GaAs quantum-
dot system �12�. The direct application of our numerical re-
sults to these systems corresponds to a choice of inhomoge-
neous broadening of about 0.6% of the average transition
frequency �̄A. Larger broadening, at these wavelengths, re-
quires the use of stronger optical pulses. Strong coupling has
yet to be observed experimentally at 1.55 �m in InAs-InP
quantum-dot systems �for which our simulations with 1% of
�̄A broadening apply without modification�. However, in a
3D PBG waveguide structure, much smaller mode volumes
and larger field strengths can be achieved than in past experi-
ments. This extraordinarily strong light localization may en-
able ultrafast population switching to be achieved at
1.55 �m even at room temperature. Our model is readily
adapted, nevertheless, to a variety of quantum-dot systems at
various wavelengths.

The dynamic population switching of quantum dots en-
abled by a 3D PBG waveguide enables multichannel all-
optical information processing on a chip. Our integrated all-
optical switching device utilizes two channels of picosecond
pulses oppositely detuned from an inhomogeneously broad-
ened two-level medium to control a third channel of on reso-
nant picosecond signal pulses. The switching action is due to

the abrupt jump of the LDOS provided by one waveguide
cutoff mode. The picosecond switching time scale and the
robustness to phonon-mediated relaxation are direct conse-
quences of strong light localization and the giant Purcell fac-
tor near the cutoff point. The subwavelength confinement of
light in the 3D PBG waveguide, the pulsed control beam,
and the persistence of quantum-dot inversion between con-
trol pulses facilitate microwatt operating powers with only
femtojoule energies required per switch. These features are
important to enabling all-optical transistors to be competitive
with their electronic counterpart.
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APPENDIX A: GENERAL FORM OF THE MASTER
EQUATION

In this appendix we derive the general form of the master
equation obeyed by the reduced density operator in the Born
approximation when the driving beam is a time-dependent
pulse.

Substituting the formal solution of Eq. �9�, �̃I�t�= �̃I�0�
+ �1 / i���0

t dt��H̃I�t�� , �̃I�t���, back into the first term on the
right-hand side �RHS� of Eq. �9� �we keep the second term
on the RHS of Eq. �9� in its current form and will show it
disappears when transferred back into the bare atomic basis
and Schrödinger picture� gives

�̇̃I�t� =
1

i�
�H̃SR

I ,�̃I�0�� − �UBḂ†U†,�̃I�t��

−
1

�2�
0

t

dt�†H̃SR
I �t�,�H̃I�t��,�̃I�t���‡ . �A1�

Assume that the interaction between the atomic system and
the reservoir is turned on at t=0 with no correlation between
the two at that moment, so that �̃I�0�= �̃I�0�R0. Here, �̃I is
the reduced density operator of the atomic system under
dressed state basis and in the interaction picture, while R0 is
the density operator of the reservoir at t=0. Also assume the
reservoir to be at thermal equilibrium so that R0 is diagonal,
then we have

	a��R = 	a�
†�R = 0. �A2�

As a result, the first term in Eq. �A1� becomes zero be-

cause TrR�H̃SR
I �t�R0�=0. Under these assumptions, we can

obtain the formal equation of motion of the reduced density
operator by taking the trace over the reservoir degree of free-
dom in Eq. �A1�,
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�̇̃I�t� = −
1

�2�
0

t

dt� TrR�†H̃SR
I �t�,�H̃SR

I �t��,�̃I�t���‡�

+
i

�
�

0

t

dt� TrR�†H̃SR
I �t�,�UBḂ†U†�t��,�̃I�t���‡�

− TrR�UBḂ†U†�t�,�̃I�t�� . �A3�

The standard Born approximation assumes weak coupling
between the atomic system and the reservoir during the time

evolution so that �̃I�t�= �̃I�t�R0+O�H̃SR
I �. Keeping only up to

the second order in H̃SR
I in Eq. �A3�, the master equation now

becomes

�̇̃I�t� = ��̇̃I�1 + ��̇̃I�2 − TrR�UBḂ†U†�t�,�̃I�t�� �A4�

with the two integral terms,

��̇̃I�1 = −
1

�2�
0

t

dt� TrR�†H̃SR
I �t�,�H̃SR

I �t��,�̃I�t��R0�‡� ,

��̇̃I�2 =
i

�
�

0

t

dt� TrR�†H̃SR
I �t�,�UBḂ†U†�t��,�̃I�t��R0

+ O�H̃SR
I ��‡� . �A5�

The standard Markovian approximation assumes that the
future evolution of �̃I�t� does not depend on its past values,
so that �̃I�t�� is replaced by �̃I�t� on the RHS of Eq. �A4�. By

writing H̃SR
I in the form H̃SR

I =�i S̃i�̃i, then after the Born-
Markov approximation, the first integral term becomes

��̇̃I�1 = − �
i,j

1

�2�
0

t

dt���S̃iS̃j�̃I�t� − S̃j�̃I�t�S̃i�	�̃i�t��̃ j�t���R

+ ��̃I�t�S̃jS̃i − S̃i�̃I�t�S̃j�	�̃ j�t���̃i�t��R� , �A6�

where 	�̃i�t��̃ j�t���R=TrR�R̃0�̃i�t��̃ j�t���, �̃I�t� is the reduced

density operator of the atom, and R̃0 is the reservoir part of
the density operator.

Now let us look at the second integral term ��̇̃I�2 in Eq.
�A4�,

��̇̃I�2 =
i

�
�

0

t

dt� TrR�†H̃SR
I �t�,�UBḂ†U†�t��,�̃I�t��R0

+ O�H̃SR
I ��‡�

=
i

�
�

0

t

dt�†TrR�H̃SR
I �t�R0�,�UBḂ†U†�t��,�̃I�t���‡

+
i

�
�

0

t

dt� TrR�†H̃SR
I �t�,�UBḂ†U†�t��,O�H̃SR

I ��‡� .

�A7�

For thermal equilibrium state of the reservoir, R0 is diag-

onal so that TrR�H̃SR
I �t�R0�=0 because of Eq. �A2�. Physi-

cally, this is because the average of the fluctuating electric

field in the reservoir is zero. Now ��̇̃I�2 becomes

��̇̃I�2 =
i

�
�

0

t

dt� TrR�†H̃SR
I �t�,�UBḂ†U†�t��,O�H̃SR

I ��‡� .

�A8�

The term UBḂ†U† in the inner commutator characterizes
the change rate of the dressed state basis. We can write the
dressed state coefficients c=cos � and s=sin � with �
=sin−1��2�−�AL� / �4�� so that the basis transformation op-
erators can be written as B=B��� and B†=B†���. The unitary
operator B��� can be explained as a rotation operator that
rotates any state vector by angle � while keeping the norm

unchanged. It then follows Ḃ†= �̇B†��+� /2�. From sin 2�
=2
 /��AL

2 +4
2 we can see that the angle � is in fact half the
angle between the torque vector � and the vertical w axis, as

will be introduced later in the Bloch equation section. Thus �̇
represents half the angular speed of the torque vector �. The

O�H̃SR
I � term represents the part of the overall density opera-

tor �̃I
correl that is due to correlation between the dressed sys-

tem and the reservoir. More precisely, �̃I
correl

�O��cH̃SR
I �̃I /��, where �c is the correlation time of the res-

ervoir assumed to be much smaller than all other time scales
of the system �50�. Now the order of magnitude of the con-
tribution from Eq. �A8� toward the overall master equation is
approximately

��̇̃I�2 � −
�̇�c

�2 �
0

t

dt�	H̃SR
I �t�H̃SR

I �t��UB���B†��

+ �/2�U†�t���R�̃I�t� . �A9�

Following similar steps as when we evaluated the corre-
lation integrals in Appendix B, in the strong-field limit, the
order of magnitude of the rate of variation associated with

Eq. �A9� is O��c�̇�−�. If we assume that the angular speed of
the torque vector � is on the same order as the high decay
rate �− �consistent with the time regime we are working in,
i.e., the duration of the pulse is comparable with the decay

time of the system�, then �̇�O��−�, so that the order of
magnitude of the rate of variation associated with Eq. �A9�
becomes O��c�−

2�. Clearly there are two reasons to ignore the

contribution of ��̇̃I�2 to the master equation. �i� The decay
rate �− characterizes the intensity of the coupling described

by the interaction Hamiltonian H̃SR
I so that

�0
t dt�	H̃SR

I �t�H̃SR
I �t��� /�2�O��−�. Then, the ��̇̃I�2 term is ef-

fectively of fourth order in H̃SR
I . Since the Born approxima-

tion keeps only up to the second order in H̃SR
I , we can safely

ignore the ��̇̃I�2 term. �ii� The smallness of the reservoir cor-

relation time �c also suggests the ��̇̃I�2 term can be dropped.
Now the radiative part of the master equation in the

dressed state basis and interaction picture simplifies to

�̇̃I = ��̇̃I�1 − TrR�UBḂ†U†�t�,�̃I�t�� �A10�

with
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��̇̃I�1 = − �
i,j

1

�2�
0

t

dt���S̃iS̃j�̃I�t� − S̃j�̃I�t�S̃i�	�̃i�t��̃ j�t���R

+ ��̃I�t�S̃jS̃i − S̃i�̃I�t�S̃j�	�̃ j�t���̃i�t��R� . �A11�

APPENDIX B: DRESSED ATOM CORRELATIONS IN THE
LOCAL MARKOV APPROXIMATION

In this Appendix, we evaluate the integrals of each term
contained in Eq. �12� for different values of i and j.

For i=4, j=1,

�
0

t

d�	�̃4�t��̃1�t − ���R

= �2c�t�s�t��
�

�g��2�
0

t

d�c�t − ��s�t − ��e−i���.

�B1�

In Markovian approximation, the upper limit of the � in-
tegral in Eq. �B1� can be extended to �, then by making use
of Eq. �13� and the following relation with the principle
value part discarded,

lim
t→�

�
0

t

d�e−i�L� = ����L� − i
PV

�L
, �B2�

we get

�
0

t

d�	�̃4�t��̃1�t − ���R =
�2

2
c�t�s�t�

1
�2�

�
−�cs/2

�cs/2

d�cs�ei�t��L−�,

�B3�

where ��L−�=2����g��2����− ��L−���. If we assume that
the photonic density of states is smooth during the region
��L−�cs /2,�L+�cs /2� such that ��L−�
��L


�0 for
−�cs /2����cs /2, then using Eq. �13� reversely in Eq. �B3�,
we arrive at

�
0

t

d�	�̃4�t��̃1�t − ���R 

�2

2
c2�t�s2�t��0. �B4�

Effectively, we have made a “local Markovian” approxi-
mation around the central Mollow band located at �L. As
long as the central Mollow band is far enough from the band
edge such that the edge �E is outside the spectral width �cs
around the central Mollow band, this approximation should
be reasonable.

For i=5, j=2,

�
0

t

d�	�̃5�t��̃2�t − ���R

= �2c2�t��
�

�g��2�
0

t

d�c2�t − ��e−i���−2��t��t

�ei���−2��t−����t−��. �B5�

Under Markovian approximation, we can replace ��t−��
with ��t� in the � integration. Then by using Eq. �13�, we get

�
0

t

d�	�̃5�t��̃2�t − ���R 
 �2c�t�2�
−�c2/2

�c2/2

d�c�
2ei�t�

�

�g��2�
0

t

d�e−i��−i���−2��t���. �B6�

By extending the � integral to infinity and discarding the principal value part of the integration, we get

�
0

t

d�	�̃5�t��̃2�t − ���R 

�2

2
c�t�2�

−�c2/2

�c2/2

d�c�
2ei�t2��

�

�g��2���� − �L − 2��t� + �� 

�2

2
c�t�4�+, �B7�

where �+=2����g��2����−�L−2��t��
2����g��2����

−�L−2��t�+�� for �� �−�c2 /2,�c2 /2� uses the local Mar-
kovian approximation around the right Mollow side band
located at �L+2��t�, just as what we have done in obtaining
Eq. �B4�.

Following the same steps for other combinations of i , j in
Eq. �12�, we obtain Eq. �14� given in the main text.

APPENDIX C: DERIVATION OF THE BLOCH EQUATION

The Bloch equation describes the temporal evolution of
the atomic system under the interaction with external driving
fields and dissipating environments. It is the equation of mo-

tion for the expectation values of the atomic dipole moment
operators �1 and �2 and population difference operator �3.
Because these bare atomic operators are time independent in
the Schrödinger picture and bare atomic basis, the dynamics
of their expectation values are solely determined by the mas-
ter equation �Eq. �23�� that describes the temporal evolution
of the atomic quantum states,

d

dt
	�i� =

d

dt
Tr���i� = Tr��̇�i� . �C1�

Substituting Eq. �23� into Eq. �C1� for i=1,2 ,3 leads to
the Bloch component equations Eq. �25� after some tedious
but straight forward algebras.
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We take the equation of motion for 	�1� as an example,

d

dt
	�1� = − i� Tr�R3��1� −

�0c2s2 + �p�c2 − s2�2

2
�Tr���1� − Tr�R3�R3�1�� −

�+c4 + 4�pc2s2

2
�Tr�R22��1� − Tr�R12�R21�1��

−
�−s4 + 4�pc2s2

2
�Tr�R11��1� − Tr�R21�R12�1�� −

cs

2
�s2�0�Tr�R12��1� − Tr�R3�R12�1�� + c2�+�Tr�R12��1�

+ Tr�R12�R3�1�� + s2�−�Tr��R12�1� − Tr�R3�R12�1�� + c2�0�Tr��R12�1� + Tr�R12�R3�1��� −
c2s2

2
��−

+ �+�Tr�R21�R21�1� + H.c. �C2�

To simplify Eq. �C2�, we first seek the expression of the
dressed state atomic operators Ri,j �i , j=1,2� and R3 in the
bare atomic basis. From Eq. �24� we can solve for �21 and
�12,

�21 = �12
† = 1

2 ��1 + i�2� . �C3�

Substituting Eq. �C3� back into Eq. �21� gives

R12 = R21
† = cs�3 +

c2 − s2

2
�1 +

i

2
�2,

R3 = �c2 − s2��3 − 2cs�1 + 1,

R22 =
1

2
�1 + R3� =

c2 − s2

2
�3 − cs�1 +

1

2
,

R11 =
1

2
�1 − R3� = −

c2 − s2

2
�3 + cs�1 −

1

2
. �C4�

Now substitute Eq. �C4� into Eq. �C2�. Then by making
use of the cyclic property of trace and the fact that �i are
Pauli matrices in the bare atomic basis, we can finally get the
equation of motion for 	�1�. We take the first term in Eq.
�C2� as an example,

− i� Tr�R3��1� = − i� Tr���1R3� = − i� Tr���1��c2

− s2��3 − 2cs�1 + 1�� = − i�c2

− s2�� Tr���1�3� + 2ics� Tr���1�1�

− i� Tr���1� = �s2 − c2��	�2� + 2ics�

− i�	�1� = −
1

2
�AL	�2� + 2ics� − i�	�1� ,

�C5�

where we used �1�3=−i�2, �i�i= I, and c2−s2=�AL / �2��.
The other two equations for 	�̇2� and 	�̇3� can be got

following similar steps. So the following Bloch component
equations are obtained �assume �0=�+ for simplicity�:

	�̇1� = − �AL	�2� −
1

Tu
	�1� + V ,

	�̇2� = �AL	�1� + 2
	�3� −
1

Tv
	�2� ,

	�̇3� = − 2
	�2� −
1

Tw
�	�3� + 1� + V	�1� . �C6�

Here, 1 /Tu,v= �c2�1+s2��++s4�−+4�p� /2�c2s2��+
−�−� /2, 1 /Tw=c2�1+s2��++s4�−, and V= ��+−�−�cs3. Tu
and Tv reduce to the transverse dephasing time and Tw re-
duces to the longitudinal dephasing time in ordinary vacuum
if we set �+=�−. V is a novel vacuum structure term arising
purely from the jump structure of the electromagnetic
vacuum.

The Bloch component equations can be written in vector
form

�̇ = � � � − �� + C , �C7�

where

� = �	�1�,	�2�,	�3�� = �u,v,w�, � = �− 2
,0,�AL� ,

�� = �u/Tu,v/Tv,w/Tw�, C = �V,0,− 1/Tw + Vu� .
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